UniPress Emacs Newsletter

What is Emacs?

UniPress Emacs began life as a text editor with multi-
window and extension capabilities, and over the years
has grown into a complete working environment with a
window manager, process control, and a simple data-
base facility. Even in its intermediate stages, Emacs
served very well as a consistent front end for line-
oriented applications, such as shells and mail readers.
For example, Emacs is able to act as a window manager
on character terminals, allowing a shell to be run in
separate portions of the screen so that the user can cut
and paste between the shell windows. So, Emacs has
always been able to act as a portable user interface that
can be easily customized by its users. It is continuing to
grow towards a complete application development and
delivery environment.

UNIX Emacs Version 2.20

Version 2.20, expected for Summer 1988 release by
UniPress, continues this evolution by extending the set
of Emacs user-interface tools. These tools are available
both to Emacs and to extension-language programs
written by users. Thus, users’ own programs can take
advantage of the device-independent interface facilities
that we are creating. We believe that these facilities
will greatly ease the software developers’ efforts to
make their applications communicate with users.

In addition, Version 2.20 makes use of the facilities of
window systems, such as NeWS ™, SunView ™, and X-
Windows, so that Emacs now resembles more closely
the other applications that run on those systems. Most
importantly, any extension language programs can also
use the window-system facilities portably. For ex-
ample, you can write a user interface in Emacs using
menus and dialog boxes, and it will run on any of the
supported window systems without modification.

Multiple Frames

Version 2.20 has multiple frame capabilities on win-
dow-system environments. All previous versions of
Emacs have maintained multiple “Emacs windows,”
known as panes, within just one window-system win-
dow. With SunTools™, for example, Emacs V2.15 runs
in a Sun window. The user can re-size the window, etc.,
but all Emacs output is directed within that one Sun
window. Emacs Version 2.20 can maintain one or more

window-system windows, known as frames, which
present views of Emacs buffers. Each frame resembles a
traditional Emacs window, consisting of a set of hori-
zontal panes, each presenting a view into a buffer, sepa-
rated by modelines. Thus, a single Emacs session can
display its output in multiple window-system win-
dows. Users can navigate as easily between frames as
between panes. This new multiple frame capability will
give Emacs users the full benefits of their window
system. We expect that users will typically display
things related to the same task in the same frame. For
instance, one frame might be used for compilation, with
one pane displaying the compilation output log and the
other pane displaying the site of the next error message
found in the log. At the same time, another frame
might contain a single pane running a shell window,
while another frame might be running the Info docu-
mentation reader. Another use would be pop-up help
windows occupying their own window space on the:
screen so that they do not take up any space from the
main Emacs text window. Of course, users are free to
use the multi-frame capability any way they wish.

Summary

Emacs V2.20 may be thought of as “regular Emacs”
with connections to the user-interface toolboxes pro-
vided by the window systems themselves (menus,
buttons, sliders, etc.). Thus, Emacs becomes an applica-
tion development environment which includes a
powerful text editor. Inaddition to the user-interface
tools provided by the window system, Emacs adds
some tools of its own.

Emacs 2.20 provides both text editor windows and
listener windows. Text editor windows allow an
application to present a piece of text that the user can
peruse or edit using the full power of the Emacs text
editor, including keyboard macros, abbreviations, and
cut/paste. User may choose the style of text editor
commands that they prefer, such as vi (e.g., j moves
down a line) or traditional Emacs (AN moves down a
line). Listener windows allow users to interact with a
running program. A listener window familiar to most
Emacs users is a shell window. These two specialized
window types are of general value to most applications,
and can be put to great advantage by developers for
their own applications.

February 1988

UniPress Emacs Newsletter

- Emacs Internals in V2.20 and Future Plans

Emacs has been internally reorganized as a set of
libraries that may be used in various combinations for
different tasks. In V2.20, these libraries reside in a
single program. Future releases will allow the libraries
to be distributed among different processes, possibly
running on different processors. This distribution is
accomplished using the SoftWire™ network-extensible
library interface, described in the next section.

Distributing the pieces of the Emacs session among
different processors allows the editing of, say, a text file,
to be done on the processor that has direct access to that
file, while the displaying of the text and the manage-
ment of user interface objects (menus, dialog boxes, etc.)
is done by the processor connected to (or inside) the
user’s terminal. This scheme is further discussed in the
sections on SoftWire and the User Interface Library.

Future releases of Emacs will be able to edit objects

other than text using commands that parallel the
commands used for editing text. Different views of the
same object (including text) may be seen in different
frames. A “view” is a graphical interpretation of the
object. Emacs has always displayed a simple view of
the text in the buffer, wherein newline characters
separate the lines of text and tab characters move to the
next tab column, and all other characters are displayed
as themselves. The reorganization of the editor allows
different types of views to be presented of the contents
of the buffer. The buffer may still contain printable text,
though it may be displayed in a special way. Fig. 1
shows how views project a representation of an object
onto a display pane.

As an example, suppose we have a buffer that contains
several pairs of graph coordinates expressed as decimal
numbers in ASCII, and we want to display them on a
coordinate plane. We could create a view that projects

Frame
Subwindow (pane
Yiew } (pane)
Object
Tiow 3 Subwindow (pane)

Fig. 1. A view projects a representation of an object being edited onto a

display pane in a frame.

00
7 \ 11
Text View 24
Data o be ~ 4 39
graphed y “
GraphView
. A

Fig. 2. The simple text view of the graph data appears as pairs of
decimal coordinates. The graph view renders it oni a coordinate plane.
Both views may appear at the same time in different panes.

February 1988

UniPress Emacs Newsletter

Emacs Internals (Cont'd)

draws and labels the axes appropriately and plots the
points. Fig. 2 shows such a buffer being displayed as
simple text in one frame and as a graph in another
frame.

Future releases of Emacs will provide more sophisti-
cated views for text to accommodate formatting (type-
face changes, placement, etc), and will allow new views
to be defined by the user.

SoftWire

SoftWire is a set of tools that allows a user-supplied
library to be used by a program over a network. It can
loosely be described as “NeWS without graphics,” but
while NeWS provides only a PostScript graphics
library, SoftWire can act as an interpretive interface for
any library. A SoftWire node is a program that consists
of the SoftWire libraries, which provide a portable inter-
process communication package and a protocol lan-
guage interpreter, together with whatever libraries are
to be made available to client programs. Linking a
library into a SoftWire node creates a network-acces-
sible interpreter for that library. For example, linking in
the UNIX curses library produces a curses interpreter,
and linking in SunView libraries yields a SunView
interpreter.

SoftWire nodes communicate with each other by using
a dynamic protocol language called NetScript™. This
language closely resembles Adobe Systems’ PostScript®
language. It may be thought of as a dynamic remote
procedure call interface that allows work to be done
where ever it may be done most efficiently. Network

traffic may be minimized by having the client load
reusable procedures into the server. This technique
allows the client to send the data in some compressed
form, after having sent a procedure that the server can
use to uncompress it. The server need not know ahead
of time how the client intends to compress the data.
This is the way NeWS operates, except that NeWS is
primarily a display server, whereas SoftWire can act as
a server for any library.

NetScript provides basic control operators and data
structures modeled after those found in PostScript. It
also includes a lightweight process mechanism and an
event distribution mechanism compatible with those
found in Sun’s NeWS window system. The NetScript
language is compatible with PostScript, except that it
lacks the graphics operators. When a user’s library is
linked into the SoftWire node, its functions become
available to NetScript programs running in that node.

Note that many of the tools available for use under
NeWS are also useful for SoftWire. For instance, the
NeWS cps utility can also be used with SoftWire to
allow C programs to call upon NetScript code running
in a SoftWire node. Other tools will be provided as part
of SoftWire, such as a C to PostScript compiler, and an
automatic library interface compiler for generating
SoftWire nodes from a native-language description of
the library calling sequences. Most generally, a SoftWire
application is organized as shown below in Fig. 3.

As an example, Emacs can be structured as a SoftWire
application simply by linking it into a SoftWire node.

In this case, the “user libraries” mentioned above are
the libraries that comprise Emacs itself. Fig. 4 illustrates

(" N
Softwire :
< L NetScript Protocol
Inter-node communication Langusge Interpreter
(netwrork, sexial, etc.)
~ .
i ™~
User :
Libraries User-supplied User-supplied
Library Library
1 2z
N y

Fig. 3. A SoftWire node contains the SoftWire communication libraries and NeScript
protocol language interpreter, together with libraries supplied by the user for network client

February 1988

UniPress Emacs Newsletter

how Emacs fits into a SoftWire node. Such an Emacs
session can communicate with other SoftWire nodes,
such as database servers, and can be called upon by
other nodes. An Emacs session might connect to an-
other to provide a conferencing facility similar to the
UNIX talk program. '

We can distribute a single Emacs session over the
network by dividing it into pieces that may each be
placed in a separate SoftWire node. In this example, the
display and low-level input is handled by a SoftWire
node known as the presentation engine, while the rest
of the Emacs session runs in a separate node. The
presentation engine always runs on the machine
connected to the user’s display/input device, but the
rest of the session may run anywhere on the network.
Future versions of Emacs will be structured in this way.
The diagram in Fig. 5 shows an Emacs node connected
to a presentation engine for its display and input, and to
a SoftWire database server node for the benefit of some
Emacs subsystem that needs to store things in a data-
base.

User interface library

The presentation engine isolates the Emacs session
from the particular window system or display hard-
ware being used, allowing the client to deal with the
display in a device-independent language. Each
window system, such as SunView or X-Windows,
typically provides window management functions for
maintaining overlapping display surfaces on the screen,
and a set of graphics functions for drawing things on

those surfaces. The presentation engine makes those
(and other) functions available for use by client pro-
grams such as Emacs. NetScript programs running in
the engine translate the system-independent protocol
used by the client into calls to the window-system'’s
functions. For example, to create a window on the
screen, a client might send

/win framebuffer /new LiteWin send def
/reshapefromuser win send
/map win send

The NetScript program in the engine interprets this
code in terms of the functions that create the window
on that particular window system.

Note that NeWS does not require a separate presenta-
tion engine, because it talks to network clients in the
same way that SoftWire does, and because it can
execute NetScript code directly. Other systems require
the presentation engine to make them resemble a NeWS
server in those respects. Fig. 6 shows three presentation
engines.

The SoftWire user interface library consists of NetScript
code that runs in the presentation engine. It allows
clients to present menus, dialog boxes, editor windows,
and listener windows, in a system-independent

language.

f ™\
Softwire
Channel - NetScript Protocol
Inter-node communication Langusge Intrpreter
(network, sexial, etc.)
\ s
(E:g?_g rgf]- o Command Text Text Display, .
dispatcher Editor Terminal Control File

-

Fig. 4. Emacs can be embedded in a SoftWire node so that the Emacs session may
communicate with other SoftWire nodes, which may in turn call upon it.

February 1988

~ Emacs Internals (Cont'd)

UniPress Emacs Newsletter

4
Emacs \W Presentation Engine
Window
Soft¥ire SoftWire Management
Network Network
et gF’Wﬁf Librery, - Library,
1tor 15patcher NetScript NetScript Text, Graphics
W Interpreter Display
Intexface Objects
{menus, controls, etc.)
L A 1
-~
Database Engine
Fig. 5. Parts of the Emacs session may be packaged in)
SoftWire nodes and distributed over a network. This SoftiWire Database
session is using a presentation engine for its display and Nfatwork IManagment
input, and has connected to a database. Library, Library
NetScript
Interpreter
A
4 . . . ™
Sun¥iew Presentation Engine
SoftWire libraries Sun¥iew libraries
HetSeript Interpreter sunwindow
Communieation suntool
Channels pixrect
- . 3 -\
X Windows Presentation Engine
Client SoftWire libraries X libraries
Program HetSeript Interpreter xlib
Communication
Channels
vy
NeW S Presentation Engine
eYWS server)
. (NeW®S server))

Fig. 6. The presentation engine makes the native window system's functions available tc SoftWire
clients over the network. The SoftWire user interface library runs in the engine to provide a system-
independent interface for clients.

February 1988

