The new Hyperties datzbase format perm;ts ies in thﬂ dataoaee te be 5l
eraanized in an essentially arbitrary way. This permits a user 1o impose a
hierarchical structure (or any other that is suitabiv Nemon;), Using he-"
features of the standard filesyster found in UMIY and ME- DOS, to simplily
access to componenis of the:gatabase when a ful ‘\r ntegmtﬁd au;homng-j;;
environment is not available, ‘and o "flatten” me stmftum of 2 delahase
to optimize use of storage when au thor ing is ‘ufly suopomeo xiao, me
new format will ailow spreading the component files of‘a catabase "‘*"“.i"oﬁ 2
multiple devices, @l low ng targer databaﬁef Lo be used on ;hpr y= b&sm ;L
systems. - : . E

Several simplifying as JFT‘LUOW have been inade, which | rm*af‘eh nitson .-
the browser interface These, however, are not | *".mf‘en T thE e st f"fli_
structure, but have been introduced out of consicerations.of ¢ efficiency i o
implementation. In future versions, someg of these ﬁf"wtr"t;‘ohﬂ may Be ,
relaxed. First, it is asstied that the articles are. tc be. dlgpmv in. :
windows whose size 13 fixed anead of brom
is that construction of a database anid forma,tmg 0‘ the c-
articles is to be done ahead of time, in a feoar:ate mmD }atm Dh"w
Furthermore, articles aré to be viewed by peying rat ner thcn SCIost
taat formatting produces acoi Mtloh of ps au\i im: gge On more powerful
systems, tha formam ng could be per rorm'—‘d at br w"‘mB time for :
resizable and/or scrolling windows. Finally, a Hyperties database 15
assumed to be static, i.e. tre contents of a gatabese wit not change during
browsing. With a more powerful databa: \P,.nnﬂaqemwt system to handle
file requests ang arbitrete access conflicts, dynamic aja%aba%e'»‘t ghuurd be
possible a8 weH.

t

In general, the files of = Hyperties. ¢ %hﬁ ase fm into ma ra%eqcrw‘ _
portable (system-independent) files, angd nomn- Lr‘rww ksymem
files. Of the-portable files, the most basic file typza is the. “'tm‘\ﬂ
which contains a pure tevt description of an mdwwdud artzcue iy it..«a
system. Pi ctures and :ar;eta may:also be por‘wb‘; 2 provnd,» that H‘{: hc’Jbt
browser :aup,mrts the file format, and cen comp pensate e A ; . ;
screen aspect ratio, etc. Non-portaple files a"e e master A—AiCh
gives the corrzspondence belween identifiers {sesbelow) s
system-specific file names, and the display 1% yhich describe the *
images of displayed pages in their formatted fori. :Tha,att e |
non-portable since they are bmary files, and rr*.,nke wuf wstem-specific
coordinate systems and window sizes. ' R L

Since a Hyperties database will consist of several types-of component
files, there will be a set of standard 3-letter extensions used to identify
file types to the system. These extensions will identify the nature of the
contents of afile, its system-specificity, and a general version number, to
permit some evolution of the internal file formats without “orphaning”
existing databases. For example, the initial portable storyboard files will
have the extension ".sb0", and a later version of the (non-portable) PS/2
display file may be "ps3”. A further convention adopted is that all
database components are referred to by an identifier, which is a
user-supplied name of arbitrary length, and that components contain their
own names, so that they may be identified and collected automatically,
without requiring user intervention. These identifiers may contain
embedded whitespace, but not leading or trailing whitespace (it will be
removed automatically); sequences of embedded whitespace will treated
as single, "generic” whitespace characters for purposes of corhparison.

In addition to the implicit type specified by the-extension, the display
files contain the images of (typed) internal system objects, whose
methods permit these objects to be loaded according to their
explicitly-stated types. These images may contain pointers to other
object images (on disk), which are simply an encoded filename and offset.
These pointers, and the handling of these objects is described in greater
detail in the object-system document.

As mentioned above, the storyboard files are pure text descriptions of
the individual documents (nodes in the hypertext network) of a Hyperties
database. These files are broken into five sections, containing the title
(the identifier of the document), synonyms (alternate identifiers by
which the document may be referenced), description (a brief textual,
graphical, etc. piece, usually used to summarize the document), content (a
lengthy multi-media piece - the document proper), and notes (an optional
collection of textual remarks maintained by the author). The content (and
possibly the description) may contain references to other documents,
which are simply the titles or synonyms of those documents, embedded in
the text (or connected to a graphic), and marked by the author. Since the
storyboard is a pure text document, it uses a special formatting language
(see document) to indicate page layout, font types, and to specify the
inclusion of graphics.

The master index provides the mapping of identifiers to actual file
names in a file system. It thus defines the collection of files that

Dol 14
YN, n
‘V'vv:‘n

N

mﬁﬁ e~ 67((e pathname with extension

Yrote S P

constitute a database. The master index is constructed automatically by
the database compiler, but is a human-readable text file, so that an
author may make use of it to locate database files in the absence of an
authoring environment, which would automatically provide reference by
identifier. The format of this file is as follows:

o ¢
{(,. ‘;’a (/L“V 1) a header line, indicating that document records follow, foHowed
f A‘pkv(j:‘\@’ \ Dy a biank line 4,14&00‘) r\l/” he s - ‘/,\ ~rie
{eu T ol ‘)\”/ ((?"1-@,,\ o ;fo\" LI~ 1<
“y ev m?.i) glcollection of document records, each COﬂS]Stmg of
o A ! 1 - ~ \eatitle, surrounded by quotes, with ** for embedded quotes _
LY é il J by _ .
N a pathname, relative to the database directory (or common) PR
[/o ‘/(/ ancestor of all database directories), no extension e GATIE,
A (on following lines) synonyms, formatted like the title, 6é G(j';i\“f;"‘""””“'
nel |\ 1 "'., 1 Wyl 7y
e VAR , w1thout athname /
A/'éf_,){;’ 9 o P ép«demrz(\érz -Hmf .fg(tl_f Tos oo “{j,“ ded vo
.";“ re /3) a header hne in 'é)lé’atn{g fﬁat%lc?ure records follow, precede-é € [“ le
Anag co

Al and followed by blank lines Cow
n A e Id&;y—,,ﬁ! 6«/5

4) a collection of picture records, each consisting of: "":‘Q”’(bo e,
e identifier (like title) COUD g [
Pﬁ/ﬂel

*-:(
\

Pﬂ\. WL. yte offset (since one file may contain several plctures) Fele. Nre
' b, N~ miSub e '€‘4‘ 7 (G ey L., =
Sy gteer () o pletr o UL, can "oy compr ley! 7 . =
4,;},1, (r..{ {4+ S)aheader line, indicating that target records follow, preceded “9¢ « ./ g
2@y CPLy and followed by blank lines ?‘{‘-’m’”a/qa#
5“‘”\‘" b ord. T X LQ 'y
ur@d r« 6)acollection of target records, identical to picture records 5;/;:, . "/9«
PSS e 72/:;,, ‘i:‘(i/ O
PIview 7) aheader line, indicating that the file map follows, preceded (= \ /*é‘zr
e and followed by blank lines , f Coe .
Tivo sy as
S0M| | The display files are created when individual storyboards are f ormatted e “ |
yake for a specific system and configuration. These files, essentially, contain u“;‘w
- twenothing but formatting information — the actual text of a document comes e 9
from the associated storyboard. In this way, formatting on-the-fly is V e
_eliminated Jallowing a document to be displayed very rapidly, but without :
having t5 keep two copies of every document (the formatted and
unf- atted versions). As mentioned above, the display files are binary
" .ages of the internal Ob]éCtS used to represent components to be - Azl
R EANEY ﬁ@ \excton | (oueelis for alread y comp,lay mr?
O fupfert \a S ot flere FLen ol
) e e floy o F““““ [alose v S, conwptley Com rf(m Je ff“r/(
S

o Ol«(*QU* ‘Ples, Just 4 v, b))
€. Psh

Uk o /;’,?// ,
, Ertep, |
displayed. Each record of this file contains a type ("class”) identifi ethat Cl Pergo “

is used by the object system to invoke the appropriate functions to read (,gw, Y
(or skip) the record. In this way, the format of the display file need not /= 7)

remain fixed as the capabilities of the browser are extended; such Tove 4
extensions are incorporated by creating new classes of objects, while the “fuqpy %
old classes continue to be supported. These display files are organizedas = , ¢ “&c.
follows: 4 ., Ple
.. Gss
Display file 1 :
<type DocumentHeader> <header info (title, no. of pages, etc) vy
<type Description> <descr1ptlon data obJect>* -
(<type Page> <page data object> **) R wtine 0/7””“’/*"5
% :S/D{ﬂ ‘/te(@"faf’ ot 74'\(7
Description and page data objects: ’ f"’”(VL,, gesS “Oh <€
<type Text> <font info (type, size, et<:)>/<“r of strings> ,pear/*d Aizp ey
<X, y, length, offset in storyboard> I “; 7-
Eype TextTarget> <* of strmgS/ < ’9(%1(6 Yl ? Cor g by s
<X, y, length, offset in storyboard> | e Fning
<type Picture> <x, y, length, offset in storyboard> l T fp 2)

<type PictureTarget> <x, y, length, offset in storyboard (target id),
length, offset in storyboard (reference id)»

A Hyperties database will also contain a number of auxiliary files,
which allow images (and associated targets), generated by various
graphics editors, to be included. These exist simply to provide an
identifier, and description of the format, for such images, without having
to modify the image files themselves (so they remain editable).

These auxiliary files, which are also human-readable, consist of an
arbitrary number of records, each of the following form:

e type (identifies picture or target, image file format, etc)
e identifier
e name of picture or target data file

The process of compiling a Hyperties database consists of several
phases. First, the given directory or directories which contain the
database are scanned for files with the appropriate extensions, and the
three parts of the index (storyboards, pictures, and targets) are created by
examining these files for their identifiers. This phase also involves some

checks for name conflicts. Then, the individual storyboards are processed
by the formatter to create the display files and extract references to
other documents in the database. At this point, all references are checked
against the index — if any identifiers are missing from the index, the user
is requested to supply their location if possible. The formatting process
generates the display files, using information contained in the current
environment description. Last, any uncorrectable errors in the database
are signalied to the user, and various cross-reference tables may be
produced, if requested. Ultimately, the compiler will support partial
compilation, for case where only a small number of documents changed.
This is a necessity for large databases, where the cost of recompiling an
entire database could be substantial.

The database structure and compilation process described above allow for
a variety of authoring aids, short of a full authoring environment, to be
constructed simply. One possibility is a simple file selection utility,
which would allow the author to select a document or picture by its
identifier (a long, mnemonic name), and, using information contained in the
master index, automatically invoke a word or graphics processor on the
appropriate file(s), and recompite the database as changes are made. This
could very likely be written using shell scripts or batch files in a UNIX or
MS-DOS environment. Another tool of great utility would be an improved
facility for selecting targets in graphical images.

- -

- oyeratl of l_;x:mi i :ri'i af it an SUN

- dizplay ! nhiew version, later ¥ or NewS)
ac

- interface dr ver foontrol of interaction)
- database manager '..:HHD]F' wdeRer)

- UULL|rE Hldf lrfdin?nlif niles angd ACCeSS

nath)

. have type id numbers and
with value of return tupe)

.) '"' & H H ;_-L_u A {

-2 R M
PR Fn»‘:xx]:"r‘x‘!..‘ “

