
A Redisplay Algorithm

James Gosling
Carnegie-Mellon University

Abstract

This paper presents an algorithm for updating the
image displayed on a conventional video terminal. It
assumes that the terminal is capable of doing the usual
insert/delete line and insert/delete character operations.
it takes as input a description of the image currently on the
screen and a description of the new image desired and
produces a series of operations to do the desired
transformation in a near-optimal manner. The algorithm is
interesting because it applies results from the theoretical
string-to-string correction problem (a generalization of the
problem of finding a longest common subsequence), to a
problem that is usually approached with crude ad-hoc
techniques.

1. Introduction
Redisplay algorithms are an important part of many

modem video editors. It is the responsibility of the
redisplay to maintain the correspondence between the
image on the screen and the text being edited. When a
change is made to the text, the image on the screen must
be updated to reflect the fact. An example of such an
editor is Emacs [8].

Communication bandwidth limitations make it
necessary to attempt to transmit to the screen only
information about changes that have been made. The
process is complicated when the insert/delete line and
insert/delete character operations available on many
commercial video terminals are used. These operations
allow lines of text to be moved up and down on the screen
by deleting lines or inserting blank lines; and they allow
text to be moved left or fight on a line by inserting and
deleting individual characters.

Redisplay algorithms can be grouped into two
categories: those that intermix the display update with the
data base update, and those that separate them.

The first approach interweaves display changes with
data base changes. Any time a change is made to the data
base that change is reflected immediatly on the screen.
This approach is easy to implement since there is usually a

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the ACM copyright
notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission.
© 1981 ACM 0-89791-050-8/81/0600/0123 $00.75

close correspondence between changes on the screen and
in the data base. For example if the data base is a text file
then inserting a line into the data base should cause a line
to be inserted on the screen. But this approach has
disadvantages: complicated compound operations can
cause unnecessary and confusing manipulation of the
screen; when the data base does not correspond closely to
the image on the screen the technique breaks down
completely (as in a structure editor); and this interweaving
of display and data base code can make the program
difficult to debug and modify and is generally poor
programming practice. An example of this approach can
be found in [3].

The second approach separates display and data base
changes. The data base is changed without considenng the
effects on the display, an update procedure is called
periodically to analyze the new data base and update the
display. The advantages of this approach parallel the
disadvantages of the first: compound operations are
handled gracefully and the separation of the data base and
the display yield a more reliable, maintainable and clean
program. The principle disadvantage is poor
performance, which can nearly be eliminated by using
good algorithms and a good implementation.

Most examples of this second approach use
straightforward, unsophisticated algorithms [4]. The
algorithm presented in this paper employs a sophisticated
but simple algorithm which is based on an algorithm for
the string-to-string correction problem.

2. The String-to-String Correction Problem
In [9j the string-to-string correction problem along with

an O(n ~) dynamic programming solution is presented.
This problem is concerned with determining the edit
distance between two strings, which is defined as the
shortest sequence of edit operations needed to transform
one string to another. An edit operation is the insertion,
deletion, or alteration of an element of a string. The
intended applications of the solution were in automatic
spelling correction, and in the solution of the longest
common subsequence problem [5, 1]. Faster algorithms
exist, but they are more complicated and their speed
advantages are only realized for large problem sizes [6, 7].

Wagner and Fischer 1 define a trace to be a description
of how an edit sequence S transforms string A into string
B, ignoring order and redundancy in S. For example:

IThe text of much of this section borrows heavily from the presentation
in [9]. They said it well and I doubt that I could improve on it.

123"

B: 'b' 'c' 't' 's' 'b' 't'

Figure 2-1: An example of a trace.

A line in this diagram joining dement i of A to dement j
of B means that B~ is derived from A t, either directly ff
A.=B. or indirectly otherwise. Certain dements of A are
u~tou~hed by lines; these elements are deleted by the
transformation. Certain elements of B are untouched by
lines; these dements are inserted by the transformation. It
is important to note that no two lines ever cross.

Formally, they define a trace from A to B as a triple
(T,A,B) where A and B are strings and T is a set of ordered
pairs satisfying:

1. 1 _< i < IAI and 1 < y < IBI
2. for any two distinct pairs (ilJx) and (/2d2) in T:

a. iz . i2 and j l a j2
b. < G Jx<Y2

Ordered pairs in the trace correspond to lines in the
diagram. (O}ET === Aigets transformed to Bj.

"naree cost functions are used:

Ct(A,,B j) is the cost of transforming A l to Bj.

C,(B) is the cost of inserting B~

Ca(At) is the cost of ddcting A r

Let T be a trace from A to B. Let I and J be the ssts of
positions in A and B respectively not touched by any line
in T. The total cost of applying T is then defmed as:

c(. = C/A.B) + iCa A,) + ,C,09
That is, the total cost is just the sum of the costs for all the
transformations, deletions, and insertions.

Now return to the diagrammatic representation of a
trace T from A to B. Let A=A'A" and B=B'B", and
suppose no line of T connects an dement of A' to B" or
A" to B'; that is the two strings A and B can each be split
into two strings without having a line ofT cross the split.

A: 'a' 'b' 'c' '1~,, 's' 't'

B: 'b' 'c'" 't' 's' 'b' 't'

Figure 2-2: Splitting a trace

Corresponding to this split in A and B, T can be split into
two traces, T' and T", in the obvious way. Furthermore,
C(T) = C(T') + C(T'), so if T is a least cost trace from A
to B, then so is T a least cost trace from A' to B', and so is
T" a least cost trace from A" to B".

Every trace T from A to B can be split into two traces
T" and T" as above such that the lengths of A" and B" are
each at most one but they are not both zero. This is the
key idea for the following theorem, upon which the edit
distance algorithm is based.

Notation: Let A and B be strings. Define A(O = a
string composed of the first i dements of A, define BO)
similarly. Defme A[t] = the /th dement of A, and B[/]
similarly. Define D~j = the minimum cost of a trace from
A(0 to B(/). For convenience in handling boundary
conditions" define D . . = oo, D . . = oo, and Vk<0,

• 1 , ' 1 , - 1 ~ .

A[k], B[k] = some umque string d ~ e n t that occurs m
neither A nor B and that can be transformed at no cost to
itself.

Theorem 1:
DO. 0 = 0
V ~j, i> 0 or j> 0, 0 _< i_< IAI, 0 < j < IBI:
D o =

rain(
D/q j . /+ Ct(A[t],B[/D,
DHj + Ca(A[/]),
D o t + C~(B[./])

)

Proof: The first part of the prcx~f
(D0, 0 = 0) is trivial, it is simply the cost of
transforming the null string to the null string.

Let T be a least cost trace from A(0 to
BO). If Air] and B[j] are both touched by lines
in T, they must both be touched by the same
line, since otherwise these lines in T would
cross. Then at least one of the following three
cases must hold:

1. A[t] and B[/] are joined by a line of T
(i.e. (Q) C "I"). Then thecost of Tis

mj = Di./, H + Ct(A[t],B[/9

corresponding to the cost of
transforming A(i-1) to B(]-I) plus the
cost of changing A[I] to B[/|.

2. A[t] is not touched by any line in T (and
B[t] may or may not be touched by a line
in T). Then the cost of T is

m 2 = DHd + Ca(A[z])

corresponding to the cost of
transforming A(i-1) to 13(/) plus the cost
of deleting A[t].

3. B[/] is not touched by any line in
T. Then the cost o fT is

m s = Dq. I + C,(B[/D

corresponding to the cost of
transforming A(0 to B(]-I) plus the cost
of inserting B0].

Sin~e one of the three cases above must hold
and D o is to be a minimum:

D O. = min(mp m 2, ms)

This theorem leads directly to the following
implementation of the minimum cost computation:

124

Algorithm 2:
D.L. ! • O;
for i := 0 to I AI loop

O/.l := 00;
end loop;
for j :- o to IBI loop

• D . i d := o0;
end mop;
for i : - 0 to I A I loop

for j := 0 to I B I loop

D U :=
mtn

end loop;
end loop;

(DHj . 1 + C t (A [i] , B ~ ']) ,
+ %(A[0).

DU. 1 + Ci(BC/ '])) ;

m t n c o s t • D i A i , i B i ;

Clearly this algorithm requires O(IAIIBI) time and
space. This time bound has been proved optimal in [10]
for the restricted case of the longest common subsequence
problem where only equal/unequal comparisons are
allowed between elements of strings. By clever
bookkeeping, the algorithm can be altered to only require
O(min(IAl,IBI)) space [51.

Only the cost of the minimum cost trace is returned by
this algorithm. To recover the trace itself, we have to
traverse matrix D from Dl^lml back to the beginning, D o o-
To aid in this traversal w~~lrme two functions: W.. telIs
us which of the three operations (insertion, deleU~n or
transformation) led to the optimal solution at/,j; it simply
tells us which of the three operands of min in the
calculation of D.. led to the minumum P.. is an ordered

• 1 . " l .
pair which glves'~.he subscripts of the subp~oblem m D of
which D/j is an extension.

W U =
t r a n s f o r m a t i o n i f D o = Di. l j . 1 + C[A[~],B[/1)
d e l o t t o n ifD.~j Di.z j + Ca(A[t~)
I n s e r t i o n i f D U DU.] + C,(B[/]))

PU =
(i - l , j -1) i fW. .=~, t r a n s f o r m a t i o n
(i- l , j) ifWi~. = do'l o t t o n
(i j - l) i f W / j = " Insort , l o n

An ambiguity exists if two of the operands of min in the
calculation ofD. . are equal and minimum If this occurs it

1] , . " .

means that there are muluple opttmal soluuons, and one
can be chosen arbitrarily.

The following algorithm prints out the trace in reverse
order:

Algorithm 3:
i := I A I ;
J := I S l ;
while i>0 or j > 0 loop

print(Wij, " a t " , i, " , " , j) ;
(~J) := Po';

end loop;

3. An Example
Figure 3-1 shows the contents of matrix D after the

execution of algorithm 2 on the data of figure 2-1 using
the following cost functions:

Ct(AeB j) = 0 iffAi= Bj, and oo otherwise

C,(Bj) = 1

Ca(A ̀) = 0

The two dashed lines represent the two minimum cost
t_aces. These cost functions cause the algorithm to find
the longest common subsequences of "abcbst" and
"bctsbt"; namely "bcbt" and "bcst".

-1 0

-1 "0,, ~ ~

o ~ \ o -

l ' a ' ~ 0".. -
I \

2 'b ' ~ 0
I

3 'c ' ~ 0 0
I

4 'b ' ~ 0 0
I I

5 's ' ~ 0 0
I I

6 ' t ' ~ o o

Figure 3-1:

1 2 3 4 5 6
'b' 'c' 't' 's' 'b' 't'

1 - 2 - 3 - 4 - 5 - 6
I i I I I I

1 ~-2 - 3 - 4 - 5 - 6

I \
"~1~:~-1 - 2 - 3 - 4 - 5

) %.
',.~ 1 2 . . . - 3 - 4

' , k. i i
, ? - 3

I ~ I ~- I,,
0 " 1 1 "' ~-..~:,, - 3
1 K , I I %.

o | o 1 - 2 "'2,.

Sample cost matrix

4. The Redisplay Mgorithm
This redisplay algorithm takes as input the description

of two images. One describes the desired appearance of
the display after the redisplay is complete. The other
describes the appearance of the display before the
redisplay is invoked. The algorithm depends on the
display having the following properties:

1. The ability to rewrite in place a character on a given
line in a given position.

2. The ability to delete a character from a given line
and position. All following characters on that line
are moved left one position, with a blank character
entering at the right margin.

3. The ability to insert a character on a given line at a
given position. The character originally at that
position and all following characters are moved right
one position. Characters that go past the right
margin disappear.

4. The ability to delete a given line on the screen. All
following lines on the screen are moved up one line,
with a blank line entering at the bottom of the
screen.

125

5. The ability to insert a line before a given line on the
screen. The line originally given, and all following
lines are moved down one line. Lines that go below
the bottom of the screen disappear.

These capabilities exist in many commercially available
video terminals. For example, The Concept-100, Heathkit
H19, Infoton-400, and DEC VT-100. This algorithm was
motivated by the desire to efficiently and effectivly exploit
these common capabilities.

Consider the subproblem of transforming one line of a
display given two strings that describe the appearance of
the display both before and after the transformation. For
now, we will use the simple cost functions of the
preceeding example.

To do this transformation and maximize the number
of characters that are not redrawn, we simply run
algorithm 2 with these cost functions on the two strings.
Then the trace gives us the characters that are to be
preserved and how they map from the old to the new
lrnage. By the property of traces that no two lines cross, it
is possible to do this operation using the allowed
primitives: namely the simple insertion and deletion ot
characters, with the attendant left and fight sliding of the
rest of the line. If character i is to be moved to position j,
then if i=j, then nothing need be done. If Kj then move
to position i and insert j-i characters. Otherwise, if DJ,
move to position j and delete i-j characters.

This is, of course, overly simplified. One has to
compensate for the fact that doing the transformation for
one pair in the trace affects all pairs to the fight of it. One
must also compensate for the usual property of these
displays that characters that move off the fight edge of the
screen are lost (lines that move off the bottom of the
screen are also lost). If you do an insertion, then a
deletion, the fightmost character of the line will be turned
into a blank. This can be handled by doing all deletions
first: simply traverse the trace twice. On the fwst
traversal, if two adjacent pairs are found that require two
characters to be moved closer together, then do a deletion.
On the second traversal, if two adjacent pairs are found
that require two characters to be moved farther apart, then
do an insertion.

After these insertions and deletions have been done,
all that remains is to redraw those characters that are not
preserved by the trace.

': " 9 9 ' '1'
B : 'b' 'c ' 't' 's' 'b ' 't'

'b ' ' ' 'b ' rl' \

I

,-" , " ,**" . .2°,. .--°.
,*" t* , ' °

""°-...

'b' 4'

'b ' 'e ' 't ' 's ' 'b ~ 't '

Deletion

Insertion

Redraw

Figure 4-1: Execution of the simple redisplay

Figure 4-1 is an example of the insertions, deletions
and writes that need to be done in order to perform the
transformation indicated by the example in figure 2-1

To formalize this, look at Di. and consider how the
transformation represented by iV is achieved given the
ability to achieve the three neighbouring transformations.

redraw
i-Ij-I

id-1

~dmw

lj

Figure 4-2: A single cell of D

To achieve our target transformation, the conversion
of the first i elements of A to the first j elements of B,
there are three cases, which correspond to to the three
cases in the proof of theorem 1.

1. The optimal transformation can be derived from D~.
l.~l by first transforming the first i-1 elements of A
t6 the first j-1 elements of B, then doing the
transformation of the element A. to Bj: It is
important to note that element A i will be in the same
string position in the intermediate string as Biin the
target string after the i-ld-1 transformation h~ been
done because of the way that insert/delete
operations behave: namely that all following
elements get moved.

126

2. The optimal transformation can be derived from D
1,/by first deleting A i and then transforming the first
/-1 elements of A to the first j elements of B. In the
other two cases we solve the subproblem first, then
extend that solution to a solution of the full
problem. Here we reverse the order (delete then
solve the subproblem) because we want to avoid
intermediate strings longer than B. If the deletion
was done first, then after the solution of the
subproblem we could have an intermediate string of
length > IBI, which because of the constraints of the
display would be truncated to the first [BI elements.

3. The optimal transformation can be derived from
~i ~-~ by first transforming the first/elements of A to

first j-1 elements of B, then doing an insert
operation at position j and the transformation of the
null element that resulted from the insertion to Bj

This leads to the following algorithm:

Algorithm 4:
procedure Redisplay (~ j) is

begin
if (/,j) = (0 , 0) then

return;
end if;
case W.. in

when trans~formatton m>
Redisplay (i - 1 . . / - 1) ;
TransformElement (j . A i, By);

when d e l e t l o n •>
DeleteElement (i) ;
Redisplay (i -1 , J) ;

when "lnsert ' ion *>
Redisplay (i, j - 1) ;
InsertElement (j) ;
TransformElement (j , null, By);

end case;
end

Referring back to the set of display properties given at
the beginning of this section, a strong symmetry between
line and character operations is apparent. A line can be
viewed as a string of characters, and a screen as a string of
lines. Algorithm 2 can be employed in three ways in a
complete redisplay algorithm:

1. To update individual lines, as has already been
described.

2. To move lines, rather than characters, using the line
insertion/deletion operations; minimizing the
amount of work done.

3.As a cost function to determine the similarity
between two lines.

This suggests the following algorithm to do the total
redisplay:

Algorithm 5:
call A l g o r i t h m 2 (

A = string of lines from old image,
B - string of lines from new image,
£a(Ai) ~ cost of deleting aline at i
Ci(B_j) cost of inserting a line at./+ Ct(null, Bj)

- call A l g o r l t h m Z (Ct(AiABJ2 Ai,

B = Aj.
Cd, Ci, C t ffi those for the one-lme case.
{ this invocation merely returns a cost

and does not touch the screen. }
)

):
call A l g o r l t h m 4 (

A = string of lines from the old image,
B = string of lines from the new image,
The procedures InsertElement and DeleteElement

do line oriented operations,
TransformElement(p, old new) is

begin
call A l g o r l t h m 2 (

A = 01d,
B ,, new.
C a, C:, C t - those for the one-line case.

):
call A l g o r l t h m 4 (

A = o l d .
B = new.
The procedures InsertElement, DeleteElement

and TransformElement do character
oriented operations on line p

);

) ;
end;

I f I is the length of a line, and s is the number of lines
on the screen, then this algorithm takes O(flP) time.
While this algorithm does an excellent job of minimising
the number of characters transmitted, its runtime is"
unacceptable, even given a clever implementation [2]. So
some compromises have to be made. In computer science,
compromises are usually called "heuristics".

5. Performance heuristics
Most of the time used by algorithm 5 is consumed by

the inner invocation of algorithm 2 as the cost function.
Other, cheaper, cost functions can be used, but optimality
is lost. Since C i and C d already take constant time, no
improvements can be made there. Large improvements
can be made by speeding up the evaluation of C e the cost
of transforming one line to another.

127

One possibility for C t is:

Ct(A,,B) = 0 iffAi=Bjand [B) otherwise.

which still takes O(/) worst case time since A, and B, are
strings of length/. This can be speeded up a~ the co~t of
some accuracy by preprocessing the two arrays of strings;
computing a hash value for each string. Then twostrings
can be compared in constant time.

Ct(A~B j) = 0 iffA~=B~ and IB] otherwise.
Doing a string comparison only takes 0(/) time in the

worst case. The expected time for a comparison is actually
a constant which depends on the size of the alphabet,
assuming that when strings are compared the comparison
stops when two differing characters are encountered. For
an alphabet size of 2 and a uniform distribution of
characters the expected number of comparisons is 2, for
larger alphabet sizes it is less. It the process of doing a
string comparison a count of the number of matching
characters may be kept, resulting in a measure of the two
lines similarity, rather than just a match/nomatch
indication. However, the overhead may still make the
hash comparison method preferable.

The choice of C t can be influenced by the intended
application. For example, the project that originally
motivated the research described by this paper was a
structure editor; ie. an editor which manipulates a tree
representation of the program, and the tree representation
is reflected back on the screen with the appearance of a
conventional program. A common operation is to embed
a series of statements within a begin-end pair. The motion
that one would like to see on the screen is for two lines to
be inserted, in which the strings "begin" and "end" are
written, and for all interyening lines to be moved fight on
the screen. This was done by using a hash of the contents
of each line that ignored leading and trailing blanks. It
has been satisfactory.

This gives us an O(s 2) time line permutation phase,
preceeded by O(s/)fiime for preprocessing. This is
followed by an O(s/0 time phase to update individual
lines.

A cheaper method of doing the intra-line update is
needed that doesn't compromise effectiveness too much.
Many methods are possible, but the following has proved
effective: Most non-total changes to a line affect only one
small subpart. For example, inserting or deleting a
character, or changing an identifier. The old and new
lines can each be broken into three subparts: a leading
match, a trailing match, and a differing string in the
middle. The leading match is the longest common prefix
of the two strings, the training match is the longest
common suffix of the two strings, and the differing strings
are just the regions in the two strings between the leading
and trailing matches. Once this partitioning has been
done, all that has to be done is to move the trailing match
sequence in the original line with insert/delete character
operations so that it lines up with the corresponding string
in the new line, and redraw the central difference.
Allowance must be made for the costs of performing the
various operations, but this is simply a long and tedious
case analysis.

New: a b c
leading
matcll

O l d : a b c

a b c

a b

x x \ d e f
central \ trailing
difference \ match
y y y \ d e

x x :~: d e

c x x d e f

f

I redraw

f

delete

Figure 5-1: Intra-Line update

So, our final redisplay algorithm is:

Algorithm 6:
call A l g o r t t h m Z (

A = string oflines from old image ,
B - string of lines from new image,
Cd(Ai) = cost of deleting a line at i
Ci(Bj) " cost of inserting a line at j + Ct(null, 8j)
Ct(Ai ,a j) " 0 t f f A/h =B~ and IBjI o t h e r w i s e .

);
call A] g o r t t h m 4 (

A = string oflines from the old image,
B * siring of lines from the new image,
The procedures InsertElement and DeleteElement

do line oriented operations,
TransformElement(p, old new) uses the
technique just outlined.

):

The values of C i and C d are affected by display screens
having a fixed length: when you do an insertion, the last
line on the screen is deleted, and when you do a deletion,
a blank line is inserted after the last line. Effectively for
each insertion you get a free deletion, and for each
deletion you get a free insertion at. the bottom of the
screen. This can be handled by setting C,(B[/]) = 0 when
evaluating Dsl and Cd(A.[i]) = 0 whenevaluating DLs.
The correspoifding insertion and deletion operations c/in
be omitted when doing the redisplay.

6. Conclusion
The redisplay algorithm described in this paper is used

in an Emacs-like editor for Unix and a structure editor.
It's performance has been quite good: to redraw
everything on the screen (when everything has changed)
takes about 0.12 seconds CPU time on a VAX 11/780
running Unix. Using the standard file typing program,
about 0.025 seconds of CPU time are needed to type one
screenful of text. Emacs averages about 0.004 CPU
seconds per keystroke (with one call on the redisplay per
keystroke).

Although in the interests of efficency we have stripped
down algorithm 5 to algorithm 6 the result is still an
algorithm which has a firm theoretical basis and which is
superior to the usual ad-hoc approach.

128

7. Acknowledgements
The people who did the real work behind this paper

are Mike Kazar, Charles Liescrson and Craig Everhart; all
from CMU.

Bibliography

1. Kevin Q. Brown. Dynamic Programming in Computer
Sdence. CMU, February, 1979.

2. Craig Everhart. --. Pe~onal communication

3. James Gosling. Fred: a screen editor for Unix. CMU
CSD, 1979. Unpublished manual.

4. B. S. Greenberg. The Multics Emacs Redisplay
Algorithm. Honeywell Inc., 1979.

5. D. S. Hirschberg. "A linear space algorithm for
computing maximal common subsequences." CACM 18
(1975), 341-343.

6. J. W. Hunt and T. G. Szymansky. "A Fast Algorithm
for Computing Longest Common Subsequences." CACM
20 (1977), 350-353.

7. W.J. Masek and M. S. Paterson. A Faster Algorithm
for Computing String Edit Distances. Tech. Rept. 105,
MIT, May, 1978.

8. Richard M. StaUman. EMACS manual for TWENEX
userx MIT AI Lab, 1980.

9. H.M. Wagner and M. J. Fischer. "The string-to-string
correction problem." JACM 21, 1 (January 1974), 168-
173.

10. C. K. Wong and A. K. Chandra. "Bounds for the
String Editing Problem." JACM23 (1976), 13-16.

129

