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Abstract 

This paper presents an algorithm for updating the 
image displayed on a conventional video terminal. It 
assumes that the terminal is capable of doing the usual 
insert/delete line and insert/delete character operations. 
it takes as input a description of the image currently on the 
screen and a description of the new image desired and 
produces a series of operations to do the desired 
transformation in a near-optimal manner. The algorithm is 
interesting because it applies results from the theoretical 
string-to-string correction problem (a generalization of the 
problem of finding a longest common subsequence), to a 
problem that is usually approached with crude ad-hoc 
techniques. 

1. Introduction 
Redisplay algorithms are an important part of many 

modem video editors. It is the responsibility of the 
redisplay to maintain the correspondence between the 
image on the screen and the text being edited. When a 
change is made to the text, the image on the screen must 
be updated to reflect the fact. An example of  such an 
editor is Emacs [8]. 

Communication bandwidth limitations make it 
necessary to attempt to transmit to the screen only 
information about changes that have been made. The 
process is complicated when the insert/delete line and 
insert/delete character operations available on many 
commercial video terminals are used. These operations 
allow lines of text to be moved up and down on the screen 
by deleting lines or inserting blank lines; and they allow 
text to be moved left or fight on a line by inserting and 
deleting individual characters. 

Redisplay algorithms can be grouped into two 
categories: those that intermix the display update with the 
data base update, and those that separate them. 

The first approach interweaves display changes with 
data base changes. Any time a change is made to the data 
base that change is reflected immediatly on the screen. 
This approach is easy to implement since there is usually a 
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close correspondence between changes on the screen and 
in the data base. For example if the data base is a text file 
then inserting a line into the data base should cause a line 
to be inserted on the screen. But this approach has 
disadvantages: complicated compound operations can 
cause unnecessary and confusing manipulation of the 
screen; when the data base does not correspond closely to 
the image on the screen the technique breaks down 
completely (as in a structure editor); and this interweaving 
of display and data base code can make the program 
difficult to debug and modify and is generally poor 
programming practice. An example of this approach can 
be found in [3]. 

The second approach separates display and data base 
changes. The data base is changed without considenng the 
effects on the display, an update procedure is called 
periodically to analyze the new data base and update the 
display. The advantages of this approach parallel the 
disadvantages of the first: compound operations are 
handled gracefully and the separation of the data base and 
the display yield a more reliable, maintainable and clean 
program. The principle disadvantage is poor 
performance, which can nearly be eliminated by using 
good algorithms and a good implementation. 

Most examples of this second approach use 
straightforward, unsophisticated algorithms [4]. The 
algorithm presented in this paper employs a sophisticated 
but simple algorithm which is based on an algorithm for 
the string-to-string correction problem. 

2. The String-to-String Correction Problem 
In [9j the string-to-string correction problem along with 

an O(n ~) dynamic programming solution is presented. 
This problem is concerned with determining the edit 
distance between two strings, which is defined as the 
shortest sequence of edit operations needed to transform 
one string to another. An edit operation is the insertion, 
deletion, or alteration of an element of a string. The 
intended applications of the solution were in automatic 
spelling correction, and in the solution of the longest 
common subsequence problem [5, 1]. Faster algorithms 
exist, but they are more complicated and their speed 
advantages are only realized for large problem sizes [6, 7]. 

Wagner and Fischer 1 define a trace to be a description 
of how an edit sequence S transforms string A into string 
B, ignoring order and redundancy in S. For example: 

IThe text of much of this section borrows heavily from the presentation 
in [9]. They said it well and I doubt that I could improve on it. 
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B: 'b' 'c' 't' 's' 'b' 't' 

Figure 2-1: An example of a trace. 

A line in this diagram joining dement i of A to dement j 
of B means that B~ is derived from A t, either directly ff 
A.=B. or indirectly otherwise. Certain dements of A are 
u~tou~hed by lines; these elements are deleted by the 
transformation. Certain elements of B are untouched by 
lines; these dements are inserted by the transformation. It 
is important to note that no two lines ever cross. 

Formally, they define a trace from A to B as a triple 
(T,A,B) where A and B are strings and T is a set of ordered 
pairs satisfying: 

1. 1 _< i < IAI and 1 < y < IBI 
2. for any two distinct pairs (ilJx) and (/2d2) in T: 

a. iz . i2 and j l  a j2 
b. < G  Jx<Y2 

Ordered pairs in the trace correspond to lines in the 
diagram. (O}ET === Aigets transformed to Bj. 

"naree cost functions are used: 

Ct(A,,B j) is the cost of transforming A l to Bj. 

C,(B) is the cost of inserting B~ 

Ca(At) is the cost of ddcting A r 

Let T be a trace from A to B. Let I and J be the ssts of 
positions in A and B respectively not touched by any line 
in T. The total cost of applying T is then defmed as: 

c(. = C/A.B) +  iCa A,) +  ,C,09 
That is, the total cost is just the sum of the costs for all the 
transformations, deletions, and insertions. 

Now return to the diagrammatic representation of a 
trace T from A to B. Let A=A'A" and B=B'B", and 
suppose no line of T connects an dement of A' to B" or 
A" to B'; that is the two strings A and B can each be split 
into two strings without having a line ofT cross the split. 

A: 'a' 'b' 'c' '1~,, 's' 't' 

B: 'b' 'c' ...." 't' 's' 'b' 't' 

Figure 2-2: Splitting a trace 

Corresponding to this split in A and B, T can be split into 
two traces, T' and T", in the obvious way. Furthermore, 
C(T) = C(T') + C(T'), so if T is a least cost trace from A 
to B, then so is T a least cost trace from A' to B', and so is 
T" a least cost trace from A" to B". 

Every trace T from A to B can be split into two traces 
T" and T" as above such that the lengths of A" and B" are 
each at most one but they are not both zero. This is the 
key idea for the following theorem, upon which the edit 
distance algorithm is based. 

Notation: Let A and B be strings. Define A(O = a 
string composed of the first i dements of A, define BO) 
similarly. Defme A[t] = the /th dement of A, and B[/] 
similarly. Define D~j = the minimum cost of a trace from 
A(0 to B(/). For convenience in handling boundary 
conditions" define D . .  = oo, D . .  = oo, and Vk<0, 

• 1 , ' 1  , - 1  ~ .  

A[k], B[k] = some umque string d ~ e n t  that occurs m 
neither A nor B and that can be transformed at no cost to 
itself. 

Theorem 1: 
DO. 0 = 0 
V ~j, i> 0 or j>  0, 0 _< i_< IAI, 0 < j <  IBI: 
D o = 

rain( 
D/q j . /+  Ct(A[t],B[/D, 
DHj + Ca(A[/]), 
D o t  + C~(B[./]) 

) 

Proof: The first part of the prcx~f 
(D0, 0 = 0) is trivial, it is simply the cost of 
transforming the null string to the null string. 

Let T be a least cost trace from A(0 to  
BO). If Air] and B[j] are both touched by lines 
in T, they must both be touched by the same 
line, since otherwise these lines in T would 
cross. Then at least one of the following three 
cases must hold: 

1. A[t] and B[/] are joined by a line of  T 
(i.e. ( Q) C "I"). Then thecost of  Tis 

mj = Di./, H + Ct(A[t],B[/9 

corresponding to the cost of 
transforming A(i-1) to B(]-I) plus the 
cost of changing A[I] to B[/|. 

2. A[t] is not touched by any line in T (and 
B[t] may or may not be touched by a line 
in T). Then the cost of T is 

m 2 = DHd + Ca(A[z]) 

corresponding to the cost of 
transforming A(i-1) to 13(/) plus the cost 
of deleting A[t]. 

3. B[/] is not touched by any line in 
T. Then the cost o fT  is 

m s = Dq. I + C,(B[/D 

corresponding to the cost of 
transforming A(0 to B(]-I) plus the cost 
of inserting B0]. 

Sin~e one of the three cases above must hold 
and D o is to be a minimum: 

D O. = min(mp m 2, ms) 

This theorem leads directly to the following 
implementation of the minimum cost computation: 
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Algorithm 2:  
D.L. ! • O; 
for i := 0 to I AI loop 

O/.l := 00; 
end loop; 
for j :- o to IBI  loop 

• D . i  d := o0; 
end mop; 
for i : -  0 to I A I  loop 

for j := 0 to I B I  loop 

D U := 
mtn 

end loop; 
end loop; 

(DHj .  1 + C t ( A [ i ] , B ~ ' ] ) ,  
+ %(A[0). 

DU. 1 + Ci(BC/ ' ] ) ) ;  

m t n c o s t  • D i A i , i B i ;  

Clearly this algorithm requires O(IAIIBI) time and 
space. This time bound has been proved optimal in [10] 
for the restricted case of the longest common subsequence 
problem where only equal/unequal comparisons are 
allowed between elements of strings. By clever 
bookkeeping, the algorithm can be altered to only require 
O(min(IAl,IBI)) space [51. 

Only the cost of the minimum cost trace is returned by 
this algorithm. To recover the trace itself, we have to 
traverse matrix D from Dl^lml back to the beginning, D o o- 
To aid in this traversal w~~lrme two functions: W.. telIs 
us which of the three operations (insertion, deleU~n or 
transformation) led to the optimal solution at/,j; it simply 
tells us which of the three operands of min in the 
calculation of D.. led to the minumum P.. is an ordered 

• 1 . " l . 
pair which glves'~.he subscripts of the subp~oblem m D of 
which D/j is an extension. 

W U = 
t r a n s f o r m a t i o n  i f D  o = Di. l j .  1 + C[A[~],B[/1) 
d e l  o t t o n  ifD.~j Di.z j  + Ca(A[t~) 
I n s e r t i o n  i f D  U DU. ] + C,(B[/])) 

PU = 
( i - l , j -1)  i fW. .=~,  t r a n s f o r m a t i o n  
( i- l , j) ifWi~. = do'l o t t o n  
(i j - l )  i f W / j  = " Insort ,  l o n  

An ambiguity exists if two of the operands of min in the 
calculation ofD. .  are equal and minimum If this occurs it 

1 ]  , . " . 

means that there are muluple opttmal soluuons, and one 
can be chosen arbitrarily. 

The following algorithm prints out the trace in reverse 
order: 

Algorithm 3: 
i := I A I ;  
J := I S l ;  
while i>0 or j > 0  loop 

print(Wij, " a t  " ,  i, " , " ,  j ) ;  
(~J)  := Po'; 

end loop; 

3. An Example 
Figure 3-1 shows the contents of matrix D after the 

execution of algorithm 2 on the data of figure 2-1 using 
the following cost functions: 

Ct(AeB j) = 0 iffAi= Bj, and oo otherwise 

C,(Bj) = 1 

Ca(A ̀ ) = 0 

The two dashed lines represent the two minimum cost 
t_aces. These cost functions cause the algorithm to find 
the longest common subsequences of "abcbst" and 
"bctsbt"; namely "bcbt" and "bcst". 

-1 0 

-1 "0,, ~ ~ 

o ~ \ o  - 

l ' a '  ~ 0".. - 
I \ 

2 'b '  ~ 0 
I 

3 'c '  ~ 0 0 
I 

4 'b '  ~ 0 0 
I I 

5 's '  ~ 0 0 
I I 

6 ' t '  ~ o o 

Figure 3-1: 

1 2 3 4 5 6 
'b' 'c' 't' 's' 'b' 't' 

1 - 2 - 3 - 4  - 5  - 6  
I i I I I I 

1 ~-2 - 3  - 4  - 5  - 6  

I \ 
"~1~:~-1 - 2  - 3  - 4  - 5  

) %.  
',.~ ...... 1 ....... 2 . . . -  3 - 4 

' ,  k. i i 
, ? - 3  

I ~ I ~- .... I,, 
0 " 1  1 "' ~-..~:,, - 3 
1 K ,  I I %. 

o | o  1 - 2  "'2,. 

Sample cost matrix 

4. The Redisplay Mgorithm 
This redisplay algorithm takes as input the description 

of two images. One describes the desired appearance of 
the display after the redisplay is complete. The other 
describes the appearance of the display before the 
redisplay is invoked. The algorithm depends on the 
display having the following properties: 

1. The ability to rewrite in place a character on a given 
line in a given position. 

2. The ability to delete a character from a given line 
and position. All following characters on that line 
are moved left one position, with a blank character 
entering at the right margin. 

3. The ability to insert a character on a given line at a 
given position. The character originally at that 
position and all following characters are moved right 
one position. Characters that go past the right 
margin disappear. 

4. The ability to delete a given line on the screen. All 
following lines on the screen are moved up one line, 
with a blank line entering at the bottom of the 
screen. 
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5. The ability to insert a line before a given line on the 
screen. The line originally given, and all following 
lines are moved down one line. Lines that go below 
the bottom of the screen disappear. 

These capabilities exist in many commercially available 
video terminals. For example, The Concept-100, Heathkit 
H19, Infoton-400, and DEC VT-100. This algorithm was 
motivated by the desire to efficiently and effectivly exploit 
these common capabilities. 

Consider the subproblem of transforming one line of a 
display given two strings that describe the appearance of 
the display both before and after the transformation. For 
now, we will use the simple cost functions of the 
preceeding example. 

To do this transformation and maximize the number 
of characters that are not redrawn, we simply run 
algorithm 2 with these cost functions on the two strings. 
Then the trace gives us the characters that are to be 
preserved and how they map from the old to the new 
lrnage. By the property of traces that no two lines cross, it 
is possible to do this operation using the allowed 
primitives: namely the simple insertion and deletion ot 
characters, with the attendant left and fight sliding of the 
rest of the line. If  character i is to be moved to position j, 
then if i=j, then nothing need be done. If Kj then move 
to position i and insert j-i characters. Otherwise, if DJ, 
move to position j and delete i-j characters. 

This is, of course, overly simplified. One has to 
compensate for the fact that doing the transformation for 
one pair in the trace affects all pairs to the fight of it. One 
must also compensate for the usual property of these 
displays that characters that move off the fight edge of the 
screen are lost (lines that move off the bottom of the 
screen are also lost). If you do an insertion, then a 
deletion, the fightmost character of the line will be turned 
into a blank. This can be handled by doing all deletions 
first: simply traverse the trace twice. On the fwst 
traversal, if two adjacent pairs are found that require two 
characters to be moved closer together, then do a deletion. 
On the second traversal, if two adjacent pairs are found 
that require two characters to be moved farther apart, then 
do an insertion. 

After these insertions and deletions have been done, 
all that remains is to redraw those characters that are not 
preserved by the trace. 

': " 9 9 '  '1' 
B :  'b'  'c '  't' 's' 'b '  't' 

'b '  ' ' 'b '  rl' \ 

I 

,-" , "  ,**" . .2°,. .--°. 
,*" t* , '  ° 

""°-... 

'b' 4' ........ 

'b '  'e '  't '  's '  'b  ~ 't '  

Deletion 

Insertion 

Redraw 

Figure 4-1: Execution of the simple redisplay 

Figure 4-1 is an example of the insertions, deletions 
and writes that need to be done in order to perform the 
transformation indicated by the example in figure 2-1 

To formalize this, look at Di. and consider how the 
transformation represented by iV is achieved given the 
ability to achieve the three neighbouring transformations. 

redraw 
i-Ij-I 

id-1 

~dmw 

lj 

Figure 4-2: A single cell of D 

To achieve our target transformation, the conversion 
of the first i elements of A to the first j elements of B, 
there are three cases, which correspond to to the three 
cases in the proof of theorem 1. 

1. The optimal transformation can be derived from D~. 
l.~l by first transforming the first i-1 elements of  A 
t6 the first j-1 elements of B, then doing the 
transformation of the element A. to Bj: It is 
important to note that element A i will be in the same 
string position in the intermediate string as Biin the 
target string after the i-ld-1 transformation h~  been 
done because of the way that insert/delete 
operations behave: namely that all following 
elements get moved. 
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2. The optimal transformation can be derived from D 
1,/by first deleting A i and then transforming the first 
/-1 elements of A to the first j elements of B. In the 
other two cases we solve the subproblem first, then 
extend that solution to a solution of the full 
problem. Here we reverse the order (delete then 
solve the subproblem) because we want to avoid 
intermediate strings longer than B. If  the deletion 
was done first, then after the solution of the 
subproblem we could have an intermediate string of 
length > IBI, which because of the constraints of the 
display would be truncated to the first [BI elements. 

3. The optimal transformation can be derived from 
~i ~-~ by first transforming the first/elements of A to 

first j-1 elements of B, then doing an insert 
operation at position j and the transformation of the 
null element that resulted from the insertion to Bj 

This leads to the following algorithm: 

Algorithm 4: 
procedure Redisplay ( ~ j )  is 

begin 
if (/,j) = ( 0 , 0 )  then 

return; 
end if; 
case W.. in 

when trans~formatton m> 
Redisplay ( i - 1 . . / - 1 )  ; 
TransformElement ( j .  A i, By); 

when d e l e t l o n  •> 
DeleteElement ( i )  ; 
Redisplay ( i -1 ,  J) ; 

when "lnsert ' ion *> 
Redisplay ( i, j -  1) ; 
InsertElement ( j )  ; 
TransformElement (j ,  null, By); 

end case; 
end 

Referring back to the set of display properties given at 
the beginning of this section, a strong symmetry between 
line and character operations is apparent. A line can be 
viewed as a string of characters, and a screen as a string of 
lines. Algorithm 2 can be employed in three ways in a 
complete redisplay algorithm: 

1. To update individual lines, as has already been 
described. 

2. To move lines, rather than characters, using the line 
insertion/deletion operations; minimizing the 
amount of work done. 

3.As a cost function to determine the similarity 
between two lines. 

This suggests the following algorithm to do the total 
redisplay: 

Algorithm 5: 
call A l g o r i t h m 2  ( 

A = string of lines from old image, 
B - string of lines from new image, 
£a(Ai) ~ cost of deleting aline at i 
Ci(B_j) cost of inserting a line at./+ Ct(null, Bj) 

- call A l g o r l t h m Z  ( Ct(AiABJ2 Ai, 

B = Aj. 
Cd, Ci, C t ffi those for the one-lme case. 
{ this invocation merely returns a cost 

and does not touch the screen. } 
) 

): 
call A l g o r l t h m 4  ( 

A = string of lines from the old image, 
B = string of lines from the new image, 
The procedures InsertElement and DeleteElement 

do line oriented operations, 
TransformElement(p, old new) is 

begin 
call A l g o r l t h m 2  ( 

A = 01d,  
B ,, new. 
C a, C:, C t - those for the one-line case. 

): 
call A l g o r l t h m 4  ( 

A = o l d .  
B = new. 
The procedures InsertElement, DeleteElement 

and TransformElement do character 
oriented operations on line p 

); 

) ;  
end; 

I f  I is the length of a line, and s is the number of lines 
on the screen, then this algorithm takes O(flP) time. 
While this algorithm does an excellent job of minimising 
the number of characters transmitted, its runtime is" 
unacceptable, even given a clever implementation [2]. So 
some compromises have to be made. In computer science, 
compromises are usually called "heuristics". 

5. Performance heuristics 
Most of the time used by algorithm 5 is consumed by 

the inner invocation of algorithm 2 as the cost function. 
Other, cheaper, cost functions can be used, but optimality 
is lost. Since C i and C d already take constant time, no 
improvements can be made there. Large improvements 
can be made by speeding up the evaluation of C e the cost 
of transforming one line to another. 
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One possibility for C t is: 

Ct(A,,B ) = 0 iffAi=Bjand [B) otherwise. 

which still takes O(/) worst case time since A, and B, are 
strings of length/. This can be speeded up a~ the co~t of 
some accuracy by preprocessing the two arrays of strings; 
computing a hash value for each string. Then twostrings 
can be compared in constant time. 

Ct(A~B j) = 0 iffA~=B~ and IB] otherwise. 
Doing a string comparison only takes 0(/) time in the 

worst case. The expected time for a comparison is actually 
a constant which depends on the size of the alphabet, 
assuming that when strings are compared the comparison 
stops when two differing characters are encountered. For 
an alphabet size of 2 and a uniform distribution of 
characters the expected number of comparisons is 2, for 
larger alphabet sizes it is less. It the process of doing a 
string comparison a count of the number of matching 
characters may be kept, resulting in a measure of the two 
lines similarity, rather than just a match/nomatch 
indication. However, the overhead may still make the 
hash comparison method preferable. 

The choice of C t can be influenced by the intended 
application. For example, the project that originally 
motivated the research described by this paper was a 
structure editor; ie. an editor which manipulates a tree 
representation of the program, and the tree representation 
is reflected back on the screen with the appearance of a 
conventional program. A common operation is to embed 
a series of statements within a begin-end pair. The motion 
that one would like to see on the screen is for two lines to 
be inserted, in which the strings "begin" and "end" are 
written, and for all interyening lines to be moved fight on 
the screen. This was done by using a hash of the contents 
of each line that ignored leading and trailing blanks. It 
has been satisfactory. 

This gives us an O(s 2) time line permutation phase, 
preceeded by O(s/)fiime for preprocessing. This is 
followed by an O(s/0 time phase to update individual 
lines. 

A cheaper method of doing the intra-line update is 
needed that doesn't compromise effectiveness too much. 
Many methods are possible, but the following has proved 
effective: Most non-total changes to a line affect only one 
small subpart. For example, inserting or deleting a 
character, or changing an identifier. The old and new 
lines can each be broken into three subparts: a leading 
match, a trailing match, and a differing string in the 
middle. The leading match is the longest common prefix 
of the two strings, the training match is the longest 
common suffix of the two strings, and the differing strings 
are just the regions in the two strings between the leading 
and trailing matches. Once this partitioning has been 
done, all that has to be done is to move the trailing match 
sequence in the original line with insert/delete character 
operations so that it lines up with the corresponding string 
in the new line, and redraw the central difference. 
Allowance must be made for the costs of performing the 
various operations, but this is simply a long and tedious 
case analysis. 

New: a b c 
leading 
matcll 

O l d :  a b c 

a b c 

a b 

x x \ d  e f 
central \ trailing 
difference \ match 
y y y \ d  e 

x x :~:  d e 

c x x d e f 

f 

I redraw 

f 

delete 

Figure 5-1: Intra-Line update 

So, our final redisplay algorithm is: 

Algorithm 6: 
call A l g o r t t h m Z  ( 

A = string oflines from old image , 
B - string of lines from new image, 
Cd(Ai) = cost of deleting a line at i 
Ci(Bj) " cost of inserting a line at j + Ct(null, 8j) 
Ct(Ai ,a j )  " 0 t f f  A/h =B~ and IBjI o t h e r w i s e .  

);  
call A ] g o r t t h m 4  ( 

A = string oflines from the old image, 
B * siring of lines from the new image, 
The procedures InsertElement and DeleteElement 

do line oriented operations, 
TransformElement(p, old new) uses the 
technique just outlined. 

): 

The values of C i and C d are affected by display screens 
having a fixed length: when you do an insertion, the last 
line on the screen is deleted, and when you do a deletion, 
a blank line is inserted after the last line. Effectively for 
each insertion you get a free deletion, and for each 
deletion you get a free insertion at. the bottom of the 
screen. This can be handled by setting C,(B[/]) = 0 when 
evaluating Dsl and Cd(A.[i]) = 0 whenevaluating DLs. 
The correspoifding insertion and deletion operations c/in 
be omitted when doing the redisplay. 

6. Conclusion 
The redisplay algorithm described in this paper is used 

in an Emacs-like editor for Unix and a structure editor. 
It's performance has been quite good: to redraw 
everything on the screen (when everything has changed) 
takes about 0.12 seconds CPU time on a VAX 11/780 
running Unix. Using the standard file typing program, 
about 0.025 seconds of CPU time are needed to type one 
screenful of text. Emacs averages about 0.004 CPU 
seconds per keystroke (with one call on the redisplay per 
keystroke). 

Although in the interests of efficency we have stripped 
down algorithm 5 to algorithm 6 the result is still an 
algorithm which has a firm theoretical basis and which is 
superior to the usual ad-hoc approach. 
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