
The Network Extensible File System Protocol Specification 2/12/90

Appendix DRAFT Page 52

Copyright© 1990 Sun Microsystems, Inc.

Example: Read a directory
Given the filehandle of a directory, use the readdir operator to enumerate all the entries in the
directory. For each entry encode its name and its fileno attribute into the reply. When the end
of the directory is reached send the reply back to the client.

Example: Copy a File
Make a copy of file (foo) called (bar). Both files exist in the same directory dfh. The request
starts by looking up the filehandle for the file to be copied and creates a filehandle for the copy.
The loop operator executes a procedure that copies the file using 1K reads and writes. It
maintains a running count of the number of bytes yet to be copied.

% Copy a file
%
dfh (foo) lookup /foofh exch def % get filehandle for (foo)
dfh (bar) create /barfh exch def % create filehandle for (bar)

/bytes foofh getattr /fsize get def % get size of (foo) so we know how much to copy
/offset 0 def % initialize offset for (bar)
{

/data foofh offset 1024 read def % read up to 1K from (foo)
barfh offset data write % write up to 1K to (bar)
/bytes bytes 1024 sub def % decrement byte count by 1024
bytes 0 le { exit } if % if it’s < 0 then we’re done
/offset offset 1024 add def % increment offset by 1024

}
loop

barfh getattr 1 encodereply sendreply % return the attributes of the new file to client.

% For each entry in a directory return its
% name and fileno attribute to the client
%
/dfh @ def

dfh 0 % filehandle and initial offset for readdir
{

exch pop % discard offset
dup dfh exch lookup getattr /fileno get
2 encodereply % encode name & fileno for reply

}
readdir

sendreply % send the reply

The Network Extensible File System Protocol Specification 2/12/90

Appendix DRAFT Page 51

Copyright© 1990 Sun Microsystems, Inc.

Example: Determine disk usage in bytes

The following request enumerates all the files in filesystem hierarchy on the server and accumulates the
total number of bytes that they occupy. The request begins by initializing the total to 0. Then a recursive
procedure “descend” is defined. It takes a directory filehandle as an argument and enumerates all the
entries in it with the readdir operator. The readdir operator takes three arguments from the operand stack:
the filehandle of the directory, an offset into the directory (initially 0) and a procedure. For each entry in
the directory readdir pushes the name of the entry and its offset in the directory and calls the procedure.
The procedure in this example first discards “.” and “..” entries since they represent the directory itself and
its parent. The lookup operator converts the name into a filehandle and the getattr operator obtains its
attributes as a dictionary object. If the type attribute indicates that the entry is a directory (type = 2) then
descend is invoked recursively to accumulate the sizes of all the files in the subtree of which this directory
is its root. Otherwise the entry is assumed to be a regular file and the size attribute is added to the running
total.
The request as shown below is an ASCII representation of the request. A client would need to parse this
request and convert it to a sequence of objects before transmitting it to the server. Text following a % is
commentary and would be discarded. Tokens like def, dup, exch, pop would be converted to operator
objects whereas tokens like /total, 0, (..) would become value objects. String objects are delimited by
parentheses. Curly braces delimit an executable array or procedure.

% du.ps
% NeFS request to recursively descend a directory hierarchy
% and return the total size of all the files contained therein.
%
/total 0 def % Initialize the total size

/descend { % Define a procedure called "descend"
dup 0
{

exch pop % Throw away the offset
dup dup (.) ne exch (..) ne and {

1 index exch lookup dup getattr
dup /ftype get 2 eq

% It’s a directory - descend into it
{ pop descend }
% It’s a file - add in its size
{ /fbytes get /total exch total add def }

ifelse
} if
pop % Throw away the name

}
readdir

} def

@ descend % The "@" is the filehandle for the root directory

total 1 encodereply sendreply % Send the final total back to the client

The Network Extensible File System Protocol Specification 2/12/90

Appendix DRAFT Page 50

Copyright© 1990 Sun Microsystems, Inc.

Interpreter Diagram

Filesystem Interface

Network Interface

Interpreter

Operand
Stack

Execution
Stack

Dictionary
Stack

Reply
Stack

Other Functions
read
write
lookup
create

remove
getattr
setattr
...

add
sub
mul
div

dup
exch
get
...

Delivers objects from the network at
the interpreter’s request. Push data
objects onto the operand stack and op-
erator objects onto the execution stack.

Take an array of data objects en-
queued on the reply stack by the cli-
ent’s request and send them back
across the network to the client.

Operators pop argu-
ments from operand
stack and push results
onto it

Main interpreter loop: pop op-
erator objects from execution
stack and invoke correspond-
ing routine.

Dictionary stack provides a
hierarchical name space for
variables.

NETWORK

FILESYSTEMS

The Network Extensible File System Protocol Specification 2/12/90

Appendix DRAFT Page 49

Copyright© 1990 Sun Microsystems, Inc.

Object Diagram

A request or response comprises a finite sequence of objects.

Objects may be classified as operators or data. An operator object represents an operation
to be performed by the interpreter. An operator object has no value. A data object repre-
sents an item of data - an integer, a string of characters, or a boolean value.

Operators
Type

Type

Value

ADD

Type
SUB

Type
MUL

Type
DIV

Type
READ

Type
WRITE

Values

INTEGER

87

Type

Value

BOOLEAN

true

Type

Value

STRING

"foo"

An example: lookup a file “bar” in directory “foo” and read 4 bytes from offset 1024.

foo bar 1024 4
lookup read

Server

data

Since the interpreter is stack-based the nota-
tion used here is reverse polish form. Re-
verse means that the arguments precede the
operator that uses them. Value objects are
pushed onto the interpreter’s operand stack.
Operator objects are executed immediately
and fetch their arguments from the operand
stack.

Request

Reply

The Network Extensible File System Protocol Specification 2/12/90

Appendix DRAFT Page 48

Copyright© 1990 Sun Microsystems, Inc.

Overview Diagram

Client

Server

Filesystem Filesystem Filesystem

Request Objects
(Operators & Data)

Reply Objects
(Data only)

Interpreter

Network Interface

Filesystem Interface

Client assembles a request program by combining operator and data
objects. The program instructs the server to perform operations
upon the filesystem. The program is transmitted to the server via
the network. The program may request the server to return a re-
sponse containing data objects.

Interpret the client’s request. The request will include
filesystem operations to be executed on the client’s be-
half. The request may return data objects to the client.

The Network Extensible File System Protocol Specification 2/12/90

Filesystem Errors DRAFT Page 47

Copyright© 1990 Sun Microsystems, Inc.

6.4 Filesystem Errors
nefs_unknown Unknown error. Use error string.
nefs_noent No such file or directory. The filename specified does not exist.
nefs_io I/O error. A hard error (e.g. disk error) occurred when the operation was in progress.
nefs_badtype File type not supported. The file type is not supported by the server.
nefs_wrongtype Operation inappropriate for this filetype.
nefs_notdir Directory operation attempted on a non-directory.
nefs_access Permission denied. The caller does not have the correct permission to perform the operation.
nefs_exist File already exists.
nefs_badoffset Illegal offset. The offset given for a file or directory operation does not make sense.
nefs_notdir Not a directory. Directory operation attempted on a non-directory.
nefs_fbig File too large. The operation caused the file to grow beyond the server’s limit.
nefs_nospace No space left on device. The operation caused the server’s filesystem to reach its limit.
nefs_rofs Read-only filesystem. Modification attempted to a read-only filesystem object.
nefs_nametoolong The filename in an operation is too long.
nefs_notempty Attempt to remove a directory that was not empty.
nefs_stale Invalid file handle. The file handle cannot be mapped to a filesystem object.
nefs_badname The filename is illegal on the server.
nefs_xfsop Operation between filesystems is not supported
nefs_busy Object is temporarily unavailable on the server.
nefs_warning A warning.

2/12/90 The Network Extensible File System Protocol Specification

Page 46 DRAFT The Error Object

Copyright© 1990 Sun Microsystems, Inc.

6.2 The Error Object
The error object conveys error information back to the client. It is intended to be a concise
description of an error. It comprises:

1. Error Number
A well-defined range of numbers that can be used to index into a table on the client. This can
be used instead of (2). A zero here means “look at the short string”.

2. Error Name
The error name. A short string of ASCII characters e.g. typecheck.

3. Error Description
Optional. This can be used to expand on the error described in (1) and (2). For instance if the
short string is nefs_ioerr then the error description could be “IDCAMS error #87”.

4. Location
An integer that identifies the offset of the failed operator in the clients request.

 The client may choose to return extra context information following the error object.

6.3 Interpreter Errors
dictfull No more room in dictionary
dictstackoverflow Too many begins
dictstackunderflow Too many ends
execstackoverflow Exec nesting too deep
invalidaccess Attempt to violate access attribute
limitcheck Implementation limit exceeded
nomem Memory resources exhausted
rangecheck Operand out of bounds
stackoverflow Operand stack overflow
stackunderflow Operand stack underflow
timeout Time limit exceeded
typecheck Operand of wrong type
undefined Name not known
undefinedresult Overflow, underflow or meaningless result
unmatchedmark Expected mark not on stack
unregistered Internal error

The Network Extensible File System Protocol Specification 2/12/90

Error Handling DRAFT Page 45

Copyright© 1990 Sun Microsystems, Inc.

6.0 Errors
Error handling is conducted according to the POSTSCRIPT model. When an operator raises an error it
references a system-wide dictionary called errordict and looks up a name that corresponds to the
error. These error names are listed in section 6.3 on page 46 and section 6.4 on page 47. The object
corresponding to the name is usually a procedure that just collects error information (including the
error name) into a dictionary called $error. It then executes a stop operator.

Execution of the stop causes the request to exit the innermost enclosing stopped context. Assuming
that the request has not invoked stopped itself, the stop is caught by a stopped context that has been
set up by the interpreter to enclose the entire request. An exit of this context via a stop results in the
execution of the default error handler in errordict called handleerror which performs a flushreply
to remove objects enqueued for transmission, followed by an encodereply and sendreply for an
error object that describes the error to the client.

{ - request - } stopped { handleerror } if

6.1 Error Handling
The client’s request can modify the default error handling scheme in several ways.

1. By substituting alternative procedures in errordict the request can change the way errors are
reported.

errordict /nefs_access { - substituted reporter - } put

2. By substituting an alternative handleerror procedure in errordict the request could return to
the client information in addition to the error object.

/handleerror { - new error handler - } def

3. A client request may enclose any sequence of operators within a stopped context for the
purpose of catching and recovering from errors.

{ fh lookup getattr } stopped
{ $error /errname get /nefs_stale ne { stop } if null }

if

The previous example uses a stopped context to catch an error from either the lookup or the
getattr operator. If it catches an error it checks for an nefs_stale error - if not then it invokes
stop to proceed to whatever error handling is defined in the next enclosing context. Otherwise
it pushes a null object onto the stack in lieu of a file attribute dict.

Do we need warnings ? A warning could be raised if the operator succeeded (required results on
the stack) but warning information needs to be communicated. A possible implementation would be
to have warnings ignored by default. Warnings would have names in errordict but their associated
value would be a null object that implies no action be taken. To register interest in warnings the
client’s request would merely replace the null object by a procedure to handle the error.
Clients must take care in formulating requests that may leave state in the server’s filesystem
following an error abort. Client requests should be idempotent - a request should clean up any
remaining state following an error.

2/12/90 The Network Extensible File System Protocol Specification

Page 44 DRAFT Operator Summary

Copyright© 1990 Sun Microsystems, Inc.

5.3.10 Miscellaneous Operators

timestatus – A used limit Execution time used and limit 37

memstatus – A used limit Memory used and limit 28

readonly obj A obj Make obj readonly 31

xcheck obj A bool Query executable object attribute 38

rcheck obj A bool Query read access to obj 31

wcheck obj A bool Query write access to objs 37

cvn string A name Convert a string to a name 17

The Network Extensible File System Protocol Specification 2/12/90

Operator Summary DRAFT Page 43

Copyright© 1990 Sun Microsystems, Inc.

5.3.8 NeFS Operators

create dfh filename attrdict A fh Create a file 17

dfh null attrdict A fh filename Create a file with a unique filename 17

remove dfh filename A – Remove a file 33

rename dfh1 filename1 dfh2 filename2 A fh Rename a file 34

access fh A accessbits Get file accessibility 14

readdir dfh offset proc A – Read a directory 33

lookup dfh filename A fh Lookup a filename in a directory 27

valid dfh filename A dfh filename fh true

dfh filename A dfh filename false Validate directory entry 37

lock fh excl timeval proc A bool

fh excl null proc A – Lock a filesystem object 26

freeze attrdict1 keyarray A attrdict2

attrdict1 null A attrdict2 Freeze attribute values 21

getattr fh A attrdict Get file attributes 22

setattr fh attrdict A – Set file attributes 35

read fh offset length A data Read data from a byte oriented file 31

readrec fh offset A data Read a record 32

fh key A data Read a keyed access record 32

write fh offset data A – Write data to a byte oriented file 38

fh offset length A – Write nulls to a byte oriented file 38

writerec fh offset data A – Write a record 38

fh key data A – Write a keyed access record 38

link dfh1 filename dfh2 A fh Create a link to a file 25

sync fh A – Flush changes to stable storage 36

inactive fh A – Filehandle no longer needed 24

getfsattr fh A fsattr Get filesystem attributes 22

tod – A timedate Get the server’s time of day 37

instance – A instance Get the server’s instance cookie 24

5.3.9 I/O Operators

= obj A – Print the value of obj at the server 13

encodereply obj1 ... objn n A – Enqueue objects for transmission to client 18

print str A – Print the string at the server 30

pstack |- obj1 ... objn A |- obj1 ... objn Print the values of all objects on the opstack 30

sendreply – A – Transmit enqueued objects to the client 34

flushreply – A – Discard objects enqueued for transmission 20

2/12/90 The Network Extensible File System Protocol Specification

Page 42 DRAFT Operator Summary

Copyright© 1990 Sun Microsystems, Inc.

5.3.6 Relational Boolean and Bitwise Operators

eq obj1 obj2 A bool Equal 19

ne obj1 obj2 A bool Not equal 28

ge int1 | str1 int2 | str2 A bool Greater than or equal 21

gt int1 | str1 int2 | str2 A bool Greater than 23

le int1 | str1 int2 | str2 A bool Less than or equal 25

lt int1 | str1 int2 | str2 A bool Less than 27

and bool1 | int1 bool2 | int2 A bool3 | int3 Logical or bitwise and 15

not bool1 | int1 A bool2 | int2 Logical or bitwise not 29

or bool1 | int1 bool2 | int2 A bool3 | int3 Logical or bitwise or 29

xor bool1 | int1 bool2 | int2 A bool3 | int3 Logical or bitwise exclusive or 39

bitshift int1 shift A int2 Bitwise shift of int1 15

5.3.7 Control Operators

exec obj A – Execute an object 19

if bool proc A – Execute proc if bool is true 23

ifelse bool proc1 proc2 A – Execute proc1 if bool is true, otherwise proc2 23

for initial incr limit proc A – Execute proc in steps of incr from initial to limit 20

repeat int proc A – Execute proc int times 34

loop proc A – Execute proc indefinitely 26

exit – A – Exit innermost looping construct 20

stop – A – Exit a stopped context 35

stopped proc A – Establish proc as a stopped context 35

countexecstack – A int The number of elements on the execution stack 16

execstack array A subarray Copy exec stack into array 19

quit – A – Exit the interpreter immediately 31

The Network Extensible File System Protocol Specification 2/12/90

Operator Summary DRAFT Page 41

Copyright© 1990 Sun Microsystems, Inc.

5.3.3 Array Operators

array int A array Create an array of length int 15

[– A mark Begin an array 12

] mark obj0 ... objn-1 A array End an array 12

{ – A – Begin an executable array 13

} – A proc End an executable array 13

length array A int The length of array 25

get array index A obj Get the element from array at offset index 21

put array index obj A – Replace the element in array at offset index 30

getinterval array index count A subarray Copy count elements from array from index 23

putinterval array1 index array2A – Replace elements of array1 by array2 at index 30

aload array A obj0 ... objn-1 array Copy array elements onto the stack 14

astore objn ... objn-1 array A array Store objects from the stack into array 15

copy array1 array2 A subarray Copy initial elements of array1 into array2 16

forall array procA – Execute proc for each element of array 20

5.3.4 Dictionary Operators

dict int A dict Create a dictionary of size int 18

length dict A int The number of key-value pairs in dict 25

maxlength dict A int The maximum number of key-value pairs in dict 27

begin dict A – Push dict on the dictionary stack 15

end – A – Pop an entry off the dictionary stack 19

def key obj A – Assign obj to key in the current dictionary 18

load key A value Find key in dictionary stack and return its value 25

store key obj A – Replace topmost entry for key in dictionary stack 36

get dict key A obj Get the value for key in dict 21

put dict key obj A – Assign obj to key in dict 30

known dict key A bool Test if key is in dict 24

where key A dict true

key A false Find dict in which key exists 37

copy dict1 dict2 A dict3 Copy elements of dict1 to dict2 16

forall dict proc A – Execute proc for each entry in dict 20

5.3.5 String Operators

string int A string Create a string with length int 36

length str A int The number of bytes in str 25

get str index A obj Get the byte with offset index in str 21

put str index int A – Put int into str at offset index 30

getinterval str index count A substr Get a substring of str starting at index for count bytes 23

putinterval str1 index str2 A – Replace bytes in str1 by str2 beginning at index 30

copy str1 str2 A substring Replace initial bytes of str2 by str1 16

forall str proc A – Invoke proc for each element of str 20

2/12/90 The Network Extensible File System Protocol Specification

Page 40 DRAFT Operator Summary

Copyright© 1990 Sun Microsystems, Inc.

5.3 Operator Summary
5.3.1 Operand Stack Manipulation Operators

pop obj A – Discard top element 29

exch obj1 obj2 A obj2 obj1 Exchange top two elements 19

dup obj A obj obj Duplicate top element 18

copy obj1 ... objn n A obj1 ... objn obj1 ... objn Duplicate top n elements 16

index objn ... obj0 n A objn ... obj0 objn Duplicate arbitrary element 24

roll objn-1 ... obj0 size count A (rolled objs) Roll size elements up count times 34

clear |- obj1 ... objn A |- Discard all elements 16

count |- obj1 ... objn A |- obj1 ... objn n Count elements on stack 16

mark – A mark Push mark on the stack 27

sget |- obj0 ... objn i A |- obj0 ... objn obji Duplicate arbitrary element in stack 35

sput |- obj0 ... objn i obj A |- obj0 ... objn Replace element in stack 35

cleartomark mark obj1 ... objnA – Discard elements down through mark 16

counttomark mark obj1 ... objn A mark obj1 ... objn n Count elements down to mark 17

5.3.2 Arithmetic Operators

add int1 int2 A sum int1 plus int2 14

div int1 int2 A quotient int1 divided by int2 18

mod int1 int2 A remainder int1 mod int2 28

mul int1 int2 A product int1 multiplied by int2 28

sub int1 int2 A difference int1 minus int2 36

abs int1 A int2 Absolute value of int1 13

neg int A int Negative of int 29

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 39

Copyright© 1990 Sun Microsystems, Inc.

xor bool1 bool2 A bool3
int1 int2 A int3
If the operands are booleans, xor pushes their logical exclusive or. If they are integers, xor pushes
their bitwise exclusive or.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
or, and, not

2/12/90 The Network Extensible File System Protocol Specification

Page 38 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

write fh offset data A –
fh offset length A –
Write to the byte-oriented file represented by fh. Offset is a byte offset - the first byte in the file has
an offset of 0. If the string data is provided it is written to the file. If length is provided, it represents
the number of zero bytes to be written to the file beginning at offset.

IMPLEMENTATION:
The server may or may not commit the data to stable storage. The client must be careful to sync the
filehandle and confirm that the data is safe before destroying the data at its end in case a server crash
loses the data from the server’s cache. The client must be able to replay the write after server
recovery. The instance operator may be used by the client to detect loss of uncommitted data from
the server’s cache.

ERRORS:
stackunderflow, typecheck, nefs_access, nefs_stale, nefs_wrongtype, nefs_fbig, nefs_rofs,
nefs_nospace, nefs_badoffset

SEE ALSO:
read, setattr, sync

writerec fh offset data A –
fh key data A –
Write data to a record oriented file. Data represents the full record to be written. If fh represents a
file where records are indexed by an integer then offset is an integer that indicates the record to be
written. The first record has an offset of 0. If fh represents a keyed access file then key is a string
used to locate the record to be written. A null object in place of data implies that an existing record
is to be deleted.

IMPLEMENTATION:
The server may or may not commit the data to stable storage. The client must be careful to sync the
filehandle and confirm that the data is safe before destroying the data at its end in case a server crash
loses the data from the server’s buffers. The client must be able to replay the writerec after server
recovery. The instance operator may be used by the client to detect a server crash and possible loss
of uncommitted data from the server’s cache.

ERRORS:
stackunderflow, typecheck, nefs_access, nefs_stale, nefs_wrongtype, nefs_fbig, nefs_rofs,
nefs_nospace, nefs_badoffset

SEE ALSO:
read, setattr, sync

COMMENT:
Does this operator provide sufficient support for record-oriented files? Can clients and servers that
mutually support record oriented files use this operator? Can Unix clients make use of this to access
record oriented files? Should a Unix server attempt to emulate record oriented files?

xcheck obj A bool
Return true if the object is executable, false if it is literal.

ERRORS:
stackunderflow

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 37

Copyright© 1990 Sun Microsystems, Inc.

timestatus – A used limit
Return the number of milliseconds of clock time that the request has been running. Limit is the
maximum time for execution. If used exceeds limit then a timeout error will be raised.

ERRORS:
stackoverflow

COMMENT:
Should the request be able to change the limit ? The client may wish to make the limit smaller.
Should there be a limit on opcodes executed too ?

tod – A timedate
Return the server’s current time and date.

ERRORS:
stackoverflow

SEE ALSO:
setattr

valid dfh filename A dfh filename fh true
dfh filename A dfh filename false
If filename has an entry in directory dfh then its filehandle and true are pushed onto the stack. If
there is no entry for filename in dfh then false is returned. This operator is useful where a subsequent
action will be based on the presence or absence of a file.

EXAMPLE:
dfh (foo) valid { - exist error - } { attrs create } ifelse
dfh (bar) valid { oldfh ne { - duplicate error - } if } attrs create

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_access, nefs_noent, nefs_notdir,
nefs_nametoolong

SEE ALSO:
lookup

wcheck obj A bool
Return true if the value of the object can be changed, false otherwise.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
readonly, rcheck

where key A dict true
key A false
Searches the dictionary stack for a dictionary that contains an entry for key. If found it returns the
dictionary and true on the stack, otherwise it returns false.

ERRORS:
invalidaccess, stackoverflow, stackunderflow

SEE ALSO:
known, load, get

2/12/90 The Network Extensible File System Protocol Specification

Page 36 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

store key value A –
Searches the dictionary stack for a dictionary with an entry for key and replaces its value with value.
If the key is not found in any dictionary then a new entry for key is made in the current dictionary.

ERRORS:
dictfull, invalidaccess, limitcheck, stackunderflow

SEE ALSO:
def, put, where

string int A string
Creates a string object of length int and pushes it on the stack. The string is initialized with zeros.

ERRORS:
limitcheck, rangecheck, stackunderflow, typecheck, nomem

SEE ALSO:
length, array, dict, type

sub int1 int2 A difference
Returns the result of subtracting int2 from int1.

ERRORS:
stackunderflow, typecheck, undefinedresult

SEE ALSO:
add, div, mul, div, mod

sync fh A –
Commit any changes made to fh to stable storage. This operator must not complete until all changes
are on stable storage.

IMPLEMENTATION:
A server that utilizes an I/O cache will not arbitrarily delete client data from the cache without first
committing it to the disk or by changing the instance value. The client can detect a loss of cached
data by comparing the server’s current instance (see instance on page 24) with a previous value
obtained at the time the data was cached. The client must not delete data from its own cache until it
receives confirmation of a successful sync since it must be able to restore the cached data if the
server loses it.
Stable storage must be immune to server crash and recovery and temporary power outages. Suitable
stable media include magnetic or optical disk, ferrite core, and battery backed-up RAM. A server
that lacks an I/O cache must commit all file changes to stable storage immediately. For such a server
sync will do nothing.
Although a server may choose to commit all cached changes to the file (even those pending from
other clients) it is not required to. The work required of the sync may be reduced by committing
only the changes made by the client requesting the sync.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_access, nefs_rofs

SEE ALSO:
setattr, write

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 35

Copyright© 1990 Sun Microsystems, Inc.

setattr fh attrdict A –
Sets the file attributes of fh to the values specified by the entries in the dictionary attrdict. Attributes
of fh that do not appear in attrdict will be unchanged. The implementation may restrict the set of
attributes that may be set.

IMPLEMENTATION:
When setting time values the client may choose either to supply a time value from its own clock or
use the tod operator to set the time according to the server’s clock.

ERRORS:
stackunderflow, typecheck, nefs_access

SEE ALSO:
getattr

sget |- obj0 ... objn i A |- obj0 ... objn obji
Gets the object at position i in the operand stack and pushes it. The object at the base of the stack
has an index of 0.

ERRORS:
rangecheck, stackunderflow, typecheck, stackoverflow

SEE ALSO:
index, sput

sput |- obj0 ... objn i obj A |- obj0 ... objn
Replace the object at position i relative to the base of the operand stack by obj. The object at the
base of the stack has an index of zero.

ERRORS:
rangecheck, stackunderflow, typecheck

SEE ALSO:
index, sget

stop – A –
Terminates the innermost instance of a stopped context and leaves the boolean value true on the
operand stack. A stopped context is a procedure invoked by the stopped operator.

ERRORS: (none)

SEE ALSO:
stopped, exit

stopped proc A –
Pushes proc onto the execution stack and executes it. Like exec except if proc runs to completion
it leaves a boolean false on top of the stack. If proc terminates prematurely as the result of a stop
then a boolean true will be left on the operand stack.

ERRORS:
stackunderflow

SEE ALSO:
stop

2/12/90 The Network Extensible File System Protocol Specification

Page 34 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

rename dfh1 filename1 dfh2 filename2 A fh
Change the filename of a filesystem object from filename1 in directory dfh1 to filename2 in directory
dfh2. Both dfh1 and dfh2 may be the same. As well as a new filename the filesystem object gets a
new filehandle fh. Rename must be atomic on the server - it cannot be interrupted in the middle.
This operation will destroy any previously existing reference to a file with filename2 in directory
dfh2.

IMPLEMENTATION:
Some implementations may require the directories dfh1 and dfh2 to be in the same filesystem.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_notdir, nefs_access, nefs_noent,
nefs_nametoolong, nefs_badname, nefs_rofs, nefs_xfsop

SEE ALSO:
link

repeat int proc A –
Removes both operands from the stack and executes proc int times. If proc executes an exit then
the repeat will terminate prematurely.

ERRORS:
rangecheck, stackunderflow, typecheck

SEE ALSO:
for, loop, forall, exit

roll objn-1 ... obj0 size count A (rolled objs)
Performs a circular shift of size objects on the operand stack count times. If count is positive the
movement is up the stack. A negative count gives movement down the stack.
EXAMPLE:

(a) (b) (c) 3 –1 roll A (b) (c) (a)

(a) (b) (c) 3 1 roll A (c) (a) (b)

(a) (b) (c) 3 0 roll A (a) (b) (c)

ERRORS:
rangecheck, stackoverflow, stackunderflow, typecheck

SEE ALSO:
exch, index, copy, pop

sendreply – A –
Transmits the objects encoded by encodereply to the client.

ERRORS: (none)

SEE ALSO:
encodereply, flushreply

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 33

Copyright© 1990 Sun Microsystems, Inc.

readdir dfh offset proc A –
For each entry in a directory represented by dfh, readdir pushes the offset of the next entry followed
by the filename of the entry onto the operand stack and invokes proc. Every entry in a directory is
assumed to have a unique offset. The offset of the first entry is 0. The units of the offset value may
vary depending on the implementation. Invocation of the exit or stop operator will terminate the
readdir operation. The offset value pushed onto the stack may be used to continue reading a
directory from an arbitrary position in a subsequent readdir invocation.
A readdir in a filesystem that supports multiple file versions will return only the most recent version
of a file.

EXAMPLE:
dfh 0 { pop dfh exch lookup getattr /size get total add /total exch def } readdir

IMPLEMENTATION:
The proc should not contain operations which may change the directory contents. Such changes may
invalidate the offset value and/or result in failure of the readdir operator. Concurrent changes to the
directory by other clients may also cause readdir to fail. After failure, recovery may be attempted
by restarting the readdir with an offset of 0.

ERRORS:
stackunderflow, typecheck, nefs_access, nefs_stale, nefs_notdir, nefs_badoffset

SEE ALSO:
create, lookup, valid, remove

COMMENT:
Changes to the directory during execution of a readdir could definitely cause problems if the
changes cause the offsets to become invalid and prevent continued execution. For Unix
implementations this does not appear to be a problem since the offset cannot become invalid through
concurrent directory modification.
An extreme solution would be to have the readdir op apply an implicit shared lock on the directory
to prevent modification.

remove dfh filename A –
Remove the entry filename for a filesystem object from the directory represented by dfh. This
operation will succeed if entry has already been removed.

IMPLEMENTATION:
This operator may not necessarily remove the filesystem object that the directory entry references if
the object has an nlinks attribute and it has a value greater than 1.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_noent, nefs_notdir, nefs_access, nefs_notempty,
nefs_rofs

SEE ALSO:
create, inactive

2/12/90 The Network Extensible File System Protocol Specification

Page 32 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

readrec fh offset1 A data offset2
fh key A data
Read a record. If fh represents a file where records are indexed by an integer then offset1 is an integer
that identifies the record to be read. The first record always has an offset1 of 0. If the records are
fixed length then the offset represents the ordinal number of the record in the file.
 If the records have variable length then the offset1 value may be interpreted only by the server. The
first record has an offset of 0. Only sequential access is allowed - each readrec returns an offset2
value that may be used to read the next record in the sequence.
Whether the file has fixed or variable length records, the returned offset2 is always that of the next
record in sequence. The offset2 returned by the last record in the file is 0.
 If fh represents a keyed access file then key is a string used to locate the record to be read. No offset
value is returned.

ERRORS:
stackunderflow, typecheck, nefs_access, nefs_stale, nefs_wrongtype, nefs_badoffset, nefs_io

SEE ALSO:
read, writerec, setattr, sync

COMMENT:
Does this operator provide sufficient support for record-oriented files? Can clients and servers that
mutually support record oriented files use this operator? Can Unix clients make use of this to access
record oriented files? Should a Unix server attempt to emulate record oriented files?
Can all implementations of record oriented files support random access to fixed length records
efficiently?

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 31

Copyright© 1990 Sun Microsystems, Inc.

quit – A –
Terminate the interpreter for this context.

ERRORS: (none)

SEE ALSO:
stop

rcheck obj A bool
Return true if the value of the object can be read, false otherwise.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
readonly, wcheck

read fh offset length A data
Read the string data from the byte-oriented file represented by fh. The first byte of data in the file
has an offset of 0. Length is the number of bytes of data to be read. The server may return less data
than requested if the length exceeds the filesystem maxreadsize attribute. The data is returned as a
string. This operator should be supported only for filesystem objects that allow access to arbitrary
ranges of bytes. The offset value may be represented by either an integer or a hyper. Fewer than
length bytes of data will be returned if offset plus length extends beyond the end of the file.

IMPLEMENTATION:
The server has the option of returning less than length bytes of data if it is unable to manage the
amount of data requested. The maximum read length supported by the server is available as a
filesystem attribute.

ERRORS:
stackunderflow, typecheck, nefs_access, nefs_stale, nefs_wrongtype, nefs_badoffset, nefs_io

SEE ALSO:
readrec, write

COMMENT:
Does there need to be an explicit indication of end of file?
Should data that consists of length binary zeroes be represented by a null object? In the case of a
sparse file the server can avoid allocating, copying, and transmitting blocks of binary zeroes. Where
an implementation allows files to have “holes”, a read inside a hole could easily return a null
without having to do a byte-by-byte check for non-null data.

readonly obj A obj
Changes the access attribute of the object to read-only. Once the read-only attribute has been set it
cannot be reset. Any attempt to modify the value of a read-only object will result in an invalidaccess
error. For an array or string object the only the access to the object itself is affected, other objects
that share the same value will retain their access attributes. There is an exception for dictionary
objects; readonly affects the value of the object. Other objects sharing the same dictionary value will
be affected.

ERRORS:
stackunderflow, invalidaccess, typecheck

SEE ALSO:
rcheck, wcheck

2/12/90 The Network Extensible File System Protocol Specification

Page 30 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

print str A –
Write the string str on the server’s standard output.

IMPLEMENTATION:
The string is assumed to be printable ASCII. A newline character (0x0a) must be appended if a line-
feed is required.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
=, pstack

COMMENT:
This operator is intended for debugging. Is it otherwise useful ? It could be used by a client to
present messages on the server’s console. Is a more specific operator needed e.g. something akin
to the Unix syslog facility - it allows messages to be prioritized.

pstack |- obj0 ... objn A |- obj0 ... objn
Write an ASCII representation of every object in the stack to the interpreter’s stderr.

ERRORS:
stackoverflow

SEE ALSO:
=, count

COMMENT:
This operator is intended for debugging. Servers could choose to support it selectively.

put array index obj A –
dict key obj A –
string index int A –
Replace the single element of the array, dict or string. If an array or string he index must be in the
range 0 – n-1 where n is the length of the array or string. If a dictionary the key and obj are stored in
the dictionary. If an entry already exists for key then its value is replaced.

ERRORS:
dictfull, invalidaccess, rangecheck, stackunderflow, typecheck,

SEE ALSO:
get, putinterval

putinterval array1 index array2 A –
str1 index str2 A –
Replace a sequence of elements in the first array or string by the entire contents of the second array
or string. The sequence replaced begins at index in the first array or string. The first array or string
must be at least as long as the second.

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
getinterval, put

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 29

Copyright© 1990 Sun Microsystems, Inc.

neg int1 A int2
Returns the negative of int.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
abs

not bool1 A bool2
int1 A int2
If the operand is a boolean, not returns its logical negation. If the operand is an integer, not returns
its bitwise (one’s) complement.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
and, or, xor, if

null – A null
Push a null object onto the operand stack.

ERRORS:
stackoverflow

SEE ALSO:
array, type

or bool1 bool2 A bool3
int1 int2 A int3
If the operands are booleans, or returns the logical or of their values. If they are integers, or returns
their bitwise inclusive or.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
and, not, xor

pop obj A –
Discard the object at the top of the stack.

ERRORS:
stackunderflow

SEE ALSO:
clear, dup

2/12/90 The Network Extensible File System Protocol Specification

Page 28 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

memstatus – A used limit
Return the number of bytes of dynamically allocated memory currently being used and the memory
limit. If used exceeds limit then a nomem error will be raised.

IMPLEMENTATION:
Some statically allocated memory will be assigned to the request for the duration of its execution.
This memory includes that allocated to the operand, execution and dictionary stacks. Statically
allocated memory is not included in used or limit
Dynamically allocated memory is consumed by new composite objects: strings, arrays and
dictionaries. These objects can be explicitly allocated with the string, array and dict operators.
They may also be allocated as side-effects of other operators: getattr creates a new dictionary, read
creates a new string. The interpreter frees dynamic memory implicitly when there are no objects
referencing it; for instance a pop operator that removes a string object from the stack will free the
memory assigned to hold the string value if the stack object is the only reference.

ERRORS:
stackoverflow

COMMENT:
Should the request be able to change the limit ? The client may wish to make the limit smaller.

mod int1 int2 A remainder
Returns the remainder that results from dividing int1 by int2.

ERRORS:
stackunderflow, typecheck, undefinedresult

SEE ALSO:
div

mul int1 int2 A product
Returns the product of int1 and int2.

ERRORS:
stackunderflow, typecheck, undefinedresult

SEE ALSO:
div, add, sub, mod

ne obj1 obj2 A bool
Compare two objects and push a boolean value false if they are equal, true if not. See eq for what
it means to be equal.

ERRORS:
invalidaccess, stackunderflow

SEE ALSO:
eq, ge, gt, le, lt

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 27

Copyright© 1990 Sun Microsystems, Inc.

lookup dfh filename A fh
Returns the filehandle fh that corresponds to filename in the directory dfh.

IMPLEMENTATION:
Where the filename refers to a mount point on the server two different replies are possible. The
server can return either the filehandle for the underlying directory that is mounted on, or the
filehandle of the root of the mounted directory. Returning the filehandle of the underlying directory
forces the client to use the MOUNT service to access the mounted directory, which insures that
MOUNT access checking can be done on the server. Such a directory has the attribute name mount.
Alternatively, servers that don’t care about MOUNT access checking can return the filehandle of the
mounted directory and automatically provide access to the filesystem. Such a directory does not
have mount as an attribute name.
A lookup in a filesystem that supports multiple file versions returns the most recent version of the
file.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_access, nefs_noent, nefs_notdir,
nefs_nametoolong

SEE ALSO:
create, remove, inactive, getattr, valid

lt int1 int2 A bool
str1 str2 A bool
If integers at the top of the stack then it returns true if int1 is less than int2, false otherwise. If strings
then it assumes that a shorter string is padded with zeros then does an element by element
comparison assuming that the string elements are integers in the range 0 – 255.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
le, eq, ne, ge, gt

mark – A mark
Pushes a mark object onto the operand stack.

ERRORS:
stackoverflow

SEE ALSO:
counttomark, cleartomark, pop

maxlength dict A int
Returns the maximum number of key-value pairs that dict can hold.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
length, dict

2/12/90 The Network Extensible File System Protocol Specification

Page 26 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

lock fh excl timeval proc A bool
fh excl null proc A –
Execute proc with the filesystem object represented by fh locked. While executing proc with the
filehandle locked the server guarantees consistency with a shared lock or atomic update with an
exclusive lock. If excl is true the lock is exclusive. An exclusive lock will not be granted unless the
client has write access to the object and there are no other locks held on the object (exclusive or
shared). If excl is false the lock is shared. A shared lock will not be granted unless the client has
read access to the object and there are no exclusive locks being held. Multiple requests may
concurrently hold shared locks but only a single request can hold an exclusive lock.

If the lock cannot be granted because of currently held locks the lock operator will block until the
lock can be granted or until the time specified by timeval has elapsed. A zero timeval may be used
to avoid blocking. If the lock is acquired and proc is executed then a boolean value true is left on
the stack. If the lock cannot be acquired within the time specified by timeval then a false is left on
the stack. If a null object is used (to represent an infinite timeval) - no boolean is left on the stack.

Beware of deadlocks when using the lock operator within proc.

EXAMPLE:
dfh true null {

dfh (foo) valid { - exist error - } { attrs create } ifelse }
lock

fh true null { fh dup getattr /fsize get data write } lock

IMPLEMENTATION:
Mandatory locking is required for all NeFS clients. Mandatory locking for access by local processes
on the server is preferable but not required. Locking may be implemented at the filehandle level.

ERRORS:
stackunderflow, nefs_stale, nefs_access

COMMENT:
Should it be an error to nest locks? Deadlock is very dangerous.
Should there be a limit on the number of locks that can be held simultaneously by a single request ?

SEE ALSO:
exec

loop proc A –
Repeatedly executes proc until proc executes an exit.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
for, repeat, forall, exit

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 25

Copyright© 1990 Sun Microsystems, Inc.

le int1 int2 A bool
str1 str2 A bool
If integers at the top of the stack then it returns true if int1 is less than or equal to int2, false otherwise.
If strings then it assumes that a shorter string is padded with zeros then does an element by element
comparison assuming that the string elements are integers in the range 0 – 255.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
lt, eq, ne, ge, gt

length array A int
dict A int
string A int
If the object is an array or string length returns the number of elements in its value. If the object is
a dictionary it returns the current number of key/value pairs that it contains.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
maxlength, array, dict, string

link dfh1 filename dfh2 A fh
Create an additional filename in directory dfh2 for the file represented by dfh1. Any previous
instance of filename in dfh2 will be destroyed.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_access, nefs_notdir, nefs_nametoolong,
nefs_badname, nefs_rofs, nefs_nospace, nefs_xfsop

SEE ALSO:
rename, remove

COMMENT:
This operator is very Unix-specific. Should all the OS-specific operators and filetypes by relegated
to appropriate appendices? This operator list should be confined to only those operators that all
implementations can reasonably expect to implement.
Note that there are no operators for Unix symbolic links. A symbolic link can be represented by a
special file type - the link itself can be represented as an attribute of the file. This file type will be
described in a Unix “flavor” of the protocol.

load key A value
Searches the dictionary stack beginning with the current dictionary for a dictionary that contains an
entry for key. When located the value is returned.

ERRORS:
invalidaccess, stackunderflow, typecheck, undefined

SEE ALSO:
where, get

2/12/90 The Network Extensible File System Protocol Specification

Page 24 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

inactive fh A –
The client no longer requires the filehandle fh. The server may choose to release resources
associated with the filehandle itself.

IMPLEMENTATION:
The inactive operation is advisory only. The server cannot rely on the client to do an inactive for
every filehandle since filehandles may be lost due to client crashes. Clients should make a best effort
to invoke inactive whenever a filehandle is thrown away.

ERRORS:
stackunderflow, typecheck, nefs_stale

SEE ALSO:
create, remove

index objn ... obj0 n A objn ... obj0 objn
Pops the integer n from the stack, fetches the nth element from the top of the stack and pushes it onto
the stack. “0 index” has the same effect as dup.

ERRORS:
rangecheck, stackunderflow, typecheck

SEE ALSO:
copy, dup, roll, sget

instance – A instance
Return the server’s current instance. This is an integer quantity that the client may use to compare
with previous values of instance to detect a server crash and possible loss of state.

ERRORS:
stackoverflow

SEE ALSO:
setattr, write, sync

COMMENT:
A server under heavy load may choose to arbitrarily discard client state e.g. cached file
modifications and signal its loss of state to clients by changing the instance.

known dict key A bool
Returns true if key has an entry in dict.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
where, load, get

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 23

Copyright© 1990 Sun Microsystems, Inc.

getinterval array index count A subarray
string index count A substring
Gets a subarray or substring object that shares some sequence of elements from the original array
or string.

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
get, putinterval

gt int1 int2 A bool
str1 str2 A bool
If integers at the top of the stack then it returns true if int1 is greater than int2, false otherwise. If
strings then it assumes that a shorter string is padded with zeros then does an element by element
comparison assuming that the string elements are integers in the range 0 – 255.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
ge, eq, ne, le, lt

if bool proc A –
Pops both objects from the top of the stack. If bool is true then proc is pushed onto the execution
stack and executed.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
ifelse

ifelse bool proc1 proc2 A –
Pops all three objects from the top of the stack. If bool is true then proc1 is pushed onto the
execution stack and executed; if false then proc2 is executed.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
if

2/12/90 The Network Extensible File System Protocol Specification

Page 22 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

getattr fh A attrdict
Returns the attributes of the filesystem object represented by fh. Each file attribute is represented by
a name and value in attrdict. Attribute values that may not be modified will have the readonly
access attribute. The set of file attributes will vary depending on the value of the filetype attribute.

IMPLEMENTATION:
The attributes of filesystem objects is the point of most disagreement between different operating
systems. Servers should make an effort to map file attributes into the core set. Attributes that have
no equivalent in the core set should be mapped into the set of names defined for the filesystem flavor.
All native attributes must be represented in this dictionary. The set of native attributes comprises
the attributes that are known to the underlying filesystem. Servers may choose to support foreign
attributes as well. Foreign attributes may be set and read by clients but no interpretation will be done
by the server.
The set of attributes in attrdict is not required to be consistent. The implementation may choose just
to create references to the real file attributes and defer their evaluation until a get operator is used.
The freeze operator may be used to guarantee consistency for any set of attributes.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_access

SEE ALSO:
setattr, freeze

COMMENT:
The client must have a way of knowing the accuracy of the time-valued attributes supplied by the
server. A time granularity factor may be a good candidate for a filesystem attribute obtainable with
getfsattr.

getfsattr fh A fsattr
Return a dictionary fsattr that contains the attributes of the filesystem in which the filesystem object
represented by the filehandle fh is a member.

IMPLEMENTATION:
Servers should make an effort to map filesystem attributes into the core set. Attributes that have no
equivalent in the core set should be mapped into the set of names defined for the filesystem flavor.
All native attributes must be represented in this dictionary. The set of native attributes comprises
the attributes that are known to the underlying filesystem. Servers may choose to support foreign
filesystem attributes as well. Foreign attributes may be set and read by clients but no interpretation
will be done by the server.
The set of attributes in attrdict is not required to be consistent. The implementation may choose just
to create references to the real filesystem attributes and defer their evaluation until a get operator is
used. The freeze operator may be used to guarantee consistency for any set of attributes.

ERRORS:
stackunderflow, nefs_stale

SEE ALSO:
getattr, freeze

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 21

Copyright© 1990 Sun Microsystems, Inc.

freeze attrdict1 keyarray A attrdict2
attrdict1 null A attrdict2
Freeze values in the attribute dictionary attrdict1. Keyarray is an array of dictionary keys to be
frozen. A null in place of a keyarray implies a freeze of all the attributes. Since some file attributes
may be expensive to obtain, a server may choose to lazy-evaluate file attributes; some attribute
values may not evaluated until a get following the getattr that obtains the attribute dictionary. The
freeze operator forces the server to evaluate a set of attributes atomically in order that their values
are mutually consistent.

IMPLEMENTATION:
The values of attributes named in the keyarray are guaranteed not to change even if the real attributes
of the file are changed either directly or indirectly as a side-effect. Implementations that freeze
attribute values with getattr may treat this operator as a null operation. The freeze operator should
be used immediately after a getattr since it cannot be assumed that a freeze will obtain current
values for the attributes to be frozen.

EXAMPLE:
dfh (foo) lookup getattr [/fsize /ctime] freeze

ERRORS:
stackunderflow, typecheck, undefined

SEE ALSO:
getattr, getfsattr

ge int1 int2 A bool
str1 str2 A bool
If integers at the top of the stack then it returns true if int1 is greater or equal to int2, false otherwise.
If strings then it assumes that the shorter string is padded with zeros then does a byte by byte
comparison assuming that the string bytes are integers in the range 0 – 255.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
gt, eq, ne, le, lt

get array index A obj
dict key A obj
string index A int
If the first object is an array or string get returns a single element from the location defined by index.
The first element has an index of 0. If the first object is a dictionary, get returns the value associated
with the key.

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck, undefined

SEE ALSO:
put, getinterval

2/12/90 The Network Extensible File System Protocol Specification

Page 20 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

exit – A –
Terminates execution of the innermost looping context e.g. loop, for, forall, repeat.

ERRORS:
invalidexit

SEE ALSO:
for, forall, loop, repeat, stop

flushreply – A –
Discard the objects enqueued for transmission to the client with encodereply.

SEE ALSO:
encodereply, sendreply

for initial incr limit proc A –
Executes proc repeatedly passing it a sequence of values starting with initial and increasing in steps
of incr to limit. The control variable is pushed onto the stack prior to each invocation of proc. If incr
is negative the control variable is decremented until it is smaller than limit.

ERRORS:
stackoverflow, stackunderflow, typecheck

SEE ALSO:
repeat, loop, forall, exit

forall array proc A –
dict proc A –
string proc A –
Executes proc once for every element in the first object. If it is an array or string it begins with the
element whose index is 0. The element in each case is pushed onto the stack prior to each invocation
of the procedure proc. For an array the element is an object; for a string an integer in the range 0 –
255, not a one character string. If the first object is a dictionary both the key and value for each entry
are pushed onto the stack. Dictionary entries are not presented in any particular order.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
for, repeat, loop, exit

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 19

Copyright© 1990 Sun Microsystems, Inc.

end – A –
Pops the current dictionary from the dictionary stack making the one below it the current dictionary.

ERRORS:
dictstackunderflow

SEE ALSO:
begin, dictstack, countdictstack

eq obj1 obj2 A bool
Pops the two objects from the top of the operand stack and pushes a boolean value true if they are
equal, false if not. Simple objects are equal if their types and values are the same. Strings are equal
if they have the same length and sequence of bytes. Arrays and dictionaries are considered equal
only if they share the same value; separate values are considered unequal even if their component
values are equal.

ERRORS:
invalidaccess, stackunderflow

SEE ALSO:
ne, le, lt, ge, gt

exch obj1 obj2 A obj2 obj1
Exchange the order of the two objects on top of the stack.

ERRORS:
stackunderflow

SEE ALSO:
dup, roll, index, pop

exec obj A –
Pops the object from the operand stack and pushes it on the execution stack, thereby executing it.

ERRORS:
stackunderflow

SEE ALSO:
xcheck, cvx

execstack array A subarray
Copies the objects from the execution stack into array returning subarray. Array must be big
enough to hold all the objects in the execution stack.

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
countexecstack, exec

2/12/90 The Network Extensible File System Protocol Specification

Page 18 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

def key value A –
Stores key and value in the current dictionary (at the top of the dictionary stack). If key is already in
the dictionary then value replaces a previous value.

ERRORS:
dictfull, invalidaccess, limitcheck, stackunderflow, typecheck

SEE ALSO:
store, put

dict int A dict
Creates a new dictionary dict with a capacity for int key/value pairs.

ERRORS:
rangecheck, stackunderflow, typecheck, nomem

SEE ALSO:
begin, end, length, maxlength

div int1 int2 A quotient
Divides int1 by int2 and leaves the integer quotient on the stack.

ERRORS:
stackunderflow, typecheck, undefinedresult

SEE ALSO:
div, add, mul, sub, mod

dup obj A obj obj
Duplicates the object on the top of the operand stack. Dup duplicates only the object itself. The
value of a composite object is not copied – it is shared.

ERRORS:
stackoverflow, stackunderflow

SEE ALSO:
copy, index

encodereply obj1 ... objn n A –
Encodes the top n objects on the stack into the output stream. The encoded objects are appended to
previously encoded data. The encoding used and the method of enqueuing the data are determined
by the underlying network interface.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
sendreply, flushreply

COMMENT:
There must be a limit to the number of objects that can be encoded in the reply buffer. Should this
be just part of the overall memory allocation (memstatus on page 28) or should there be a separate
limit for the response buffer and a unique error when it is exceeded ?

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 17

Copyright© 1990 Sun Microsystems, Inc.

counttomark mark obj1 ... objn A mark obj1 ... objn n
Counts the objects on the operand stack down to the first mark and pushes this count on the operand
stack.

ERRORS:
stackoverflow, unmatchedmark

SEE ALSO:
mark, count

create fh1 filename attrs A fh2
fh1 null attrs A fh2 filename
Create a filesystem object with filename in the directory represented by fh1. If a null object is
provided as a filename the server will create a assign a unique filename to the new object and return
the filename. The new object represented by fh2 will have the attributes contained in attrs. The
filetype file attribute must be set. Any previously existing object with the same filename will be
destroyed.

IMPLEMENTATION:
Clients may set the size attribute as a hint to the server of the final size of the file. This may be useful
to servers that allocate space for large files differently from small files. Space allocated in this way
need not be physically allocated but it must appear to contain binary zeroes.

ERRORS:
stackunderflow, typecheck, nefs_stale, nefs_notdir, nefs_nametoolong, nefs_rofs,
nefs_nospace, nefs_badname

SEE ALSO:
remove

COMMENT:
Both the valid and lock ops may be used in conjunction with create to duplicate the semantics of a
non-exclusive create e.g.
dfh true null {

dfh (foo) valid
{

oldfh ne { - return error - } if
} if
attrs create

} lock

means “create a new file (foo). If an old (foo) exists it must have the filehandle oldfh.”

cvn string A name
Converts a string object to a name object.

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
string

2/12/90 The Network Extensible File System Protocol Specification

Page 16 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

clear |- obj1 ... objn A |-
Pops all objects from the operand stack.

ERRORS: (none)

SEE ALSO:
count, cleartomark, pop

cleartomark mark obj1 ... objn A –
Pops all objects down to a mark and pops the mark itself.

ERRORS:
unmatchedmark

SEE ALSO:
clear, mark, counttomark, pop

copy obj1 ... objn n A obj1 ... objn obj1 ... objn
dict1 dict2 A dict2
array1 array2 A subarray
str1 str2 A substring
If the topmost object is an integer then the topmost n objects on the stack are duplicated. If the
topmost objects are arrays then all the objects of array1 are copied into array2. Array2 must be at
least as big as array1. If the objects are dictionaries, the contents of dict1 are copied into dict2. The
length of dict2 must be zero and it must have a maxlength as least as big as dict1. If the objects
are strings then all the bytes of string1 are copied into string2. String2 must be at least as big as
string1.

ERRORS:
invalidaccess, rangecheck, stackunderflow, stackoverflow, typecheck

SEE ALSO:
dup, get, put, putinterval

count |- obj1 ... objn A |- obj1 ... objn n
Counts the number of objects on the operand stack and pushes the count on the operand stack.

ERRORS:
stackoverflow

SEE ALSO:
counttomark

countexecstack – A int
Count the number of objects on the execution stack.

ERRORS:
stackoverflow

SEE ALSO:
execstack

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 15

Copyright© 1990 Sun Microsystems, Inc.

and bool1 bool2 A bool3
int1 int2 A int3
If the objects are booleans it pushes a boolean object that represents their logical and. If the objects
are integers the result is their bitwise and.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
or, xor, not, true, false

array int A array
Returns an array of size int. The array is initialized with null objects.

ERRORS:
rangecheck, stackunderflow, typecheck, nomem

SEE ALSO:
[,], aload, astore

astore objn ... objn-1 array A array
Stores n objects from the stack into the array, where n is the length of the array. This is the inverse
of load.

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
aload, put, putinterval

begin dict A –
Push dict onto the dictionary stack making it the current dictionary.

ERRORS:
dictstackoverflow, invalidaccess, stackunderflow, typecheck

SEE ALSO:
end, countdictstack, dictstack

bitshift int1 shift A int2
Shifts the binary representation of int1 left by shift bits. Bits shifted out are lost. Bits shifted in are
zero. If shift is negative then the shift is a rightward shift by –shift bits.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
and, or, xor, not

2/12/90 The Network Extensible File System Protocol Specification

Page 14 DRAFT Operator Details

Copyright© 1990 Sun Microsystems, Inc.

access fh A accessbits
Determine what type of access is allowed on the filesystem object represented by fh. Accessbits is
an integer that represents a bit field containing bit encodings of the types of access permitted. Each
kind of access is represented by a bit. A bit set to a 1 means that the corresponding access type is
allowed. Bit encodings are as follows:
0x01 READ The data in the object fh can be accessed
0x02 WRITE The data in the object fh can be changed
0x04 CHANGE The attributes of the object fh can be changed
0x08 LOOKUP Where fh is a directory a lookup may be performed
0x10 REMOVE Where fh is a directory a remove may be performed
Is this set of access types sufficient ? What others are there ?

IMPLEMENTATION:
The access operation is provided to allow clients to do access checking before doing a series of
operations. This is useful in operating systems (such as UNIX) where permission checking is done
only when a file or directory is opened. The permissions returned by access are not permanent.
Access permissions can change at any time.
The credentials of the requestor are assumed to be in the execution environment and accessible to
the filesystem operations. Credentials are conveyed into the environment by the Interpreter
Network Interface (see section 3.3.4 on page 6).

ERRORS:
stackunderflow, typecheck, nefs_stale

SEE ALSO:
getattr, setattr

COMMENT:
Remove permission assumes that the filesystem object referenced by the directory entry may itself
be removed even if write permission is not granted.
Write permission may allow attributes to change as a side-effect even if change permission is not
granted.

add int1 int2 A sum
The sum of two integers.

ERRORS:
stackunderflow, typecheck, undefinedresult

SEE ALSO:
div, mul, sub, div, mod

aload array A obj0 ... objn-1 array
Pushes all the elements of array onto the operand stack followed by the array itself.

ERRORS:
invalidaccess, stackoverflow, stackunderflow, typecheck

SEE ALSO:
astore, get, getinterval

The Network Extensible File System Protocol Specification 2/12/90

Operator Details DRAFT Page 13

Copyright© 1990 Sun Microsystems, Inc.

{ – A –
Marks the beginning of a sequence of objects that define an executable array. The following objects
in the input stream are scanned by the interpreter in deferred execution mode.

ERRORS:
stackoverflow

SEE ALSO:
}, mark, array

} – A proc
Marks the end of a sequence of objects that define an executable array. The executable array is
pushed onto the operand stack.

ERRORS:
unmatchedmark

SEE ALSO:
{, mark, array

= obj A –
Print a text representation of the object on the server’s standard output.

IMPLEMENTATION:
This operator is intended for debugging. Servers may choose to support it selectively.

ERRORS:
stackunderflow

SEE ALSO:
print, pstack

abs int1 A int2
Pushes the absolute value of int1 onto the stack

ERRORS:
stackunderflow, typecheck

SEE ALSO:
typecheck

2/12/90 The Network Extensible File System Protocol Specification

Page 12 DRAFT Introduction

Copyright© 1990 Sun Microsystems, Inc.

5.0 Operators

5.1 Introduction
The operators are presented here in alphabetic order. Each operator description begins first with the
name of the opcode followed by a format that describes the stack before and after execution of the
operator. The sequence of tokens appearing to the left of the arrow A is the required operand stack
contents before execution of the operator. The object at the top of the stack is the rightmost object.
The objects to the right of the arrow are the stack contents following execution of the operator; again,
the top of stack is the rightmost object. The words first or second in a description apply from the left
of a sequence i.e. the first operand is the first pushed onto the stack. A null sequence of objects is
marked by a “–” where “– A –” means that the operator requires no arguments and leaves none.
The special token “|-” represents the bottom of the stack. Then follows a detailed explanation of what
the operator does. An IMPLEMENTATION entry may be included to describe issues relating to the
implementation of the operator on different servers. The ERRORS entry lists the errors that may be
executed by the operator. The SEE ALSO entry lists related operators. A COMMENT section is included
in this draft of the protocol to present issues or arguments relating to the operator.

5.2 Operator Details

This list of operators is intended to represent the “core set” that all implementations will attempt to
support. The list is not complete nor precisely defined - more operators will likely be added in
successive drafts.
There are no operators to support versioned file systems. The lookup operator is defined to return
just the “most recent” version of a file. There needs to be an equivalent operator that allows a
particular version of a file to be selected. Similarly, there needs to be support for versioned files
either in the create and readdir operators or, perhaps more suitably, new operators that are
designed specifically to support versioned files.

 There needs to be an extension mechanism defined to cope with new operators and the objects that
they operate on.

[– A mark
Pushes a mark object onto the operand stack. This is used to mark the beginning of an arbitrary
number of objects that will be put on the stack to be formed into a new array with the] operator.

ERRORS:
stackoverflow

SEE ALSO:
], mark, array, astore

] mark obj0 ... objn-1 A array
Pops n elements from the stack down to the mark and forms them into a new array with n elements.
The new array is pushed onto the stack.

ERRORS:
unmatchedmark

SEE ALSO:
], mark, array, astore

The Network Extensible File System Protocol Specification 2/12/90

Filesystem Objects DRAFT Page 11

Copyright© 1990 Sun Microsystems, Inc.

This list of object types is intended to represent the “core set” that all implementations will attempt
to support. The list is not complete nor precisely defined - more types will likely be added in
successive drafts.

 There needs to be an extension mechanism defined to cope with new types of fundamental objects
and new types of filesystem objects.

2/12/90 The Network Extensible File System Protocol Specification

Page 10 DRAFT Filesystem Objects

Copyright© 1990 Sun Microsystems, Inc.

mtime Timeval. The time when the file data was last modified (written).

ctime Timeval. The time when the file attributes were changed.

btime Timeval. The time when the file was created (born).

nlinks Integer. The number of names that reference the object. Must be non-zero.

recminsize Integer. The minimum number of bytes per record in a record oriented file.

recmaxsize Integer. The maximum number of bytes per record in a record oriented file.

symlink String. The pathname that represents a Unix symbolic link

4.2.4 Filesystem Attributes
Like file attributes, the attributes of a filesystem are represented by a dictionary. Each attribute is
represented by a key value in the dictionary and a corresponding value. The value may be null if the
value is boolean and just the appearance of the name implies true.

fstype String. The filesystem type. This attribute determines the set of names that define
the attribute set. The subtype attribute may be used to extend this attribute set.

fssubtype String. The filesystem subtype. This optional attribute may be used to extend the
set of attributes defined by fstype.

services Integer. A bitfield that encodes the set of services that the filesystem makes
available. A bit set to a binary 1 means that the service is available.
0x0001 Read only access allowed.
0x0002 Supports version numbers
0x0004 Hard links supported.

ftypes Array. An array of ftype values (see ftype page 8). These are the file types that
the filesystem supports. For any filetype included in this array the filesystem
guarantees to support all operations that relate to that filetype.

namemaxlen Integer. The maximum number of characters in a name

namebadch String. The set of characters that are not permitted in file names

nameset Integer. The character set used for names. An encoding based on ISO codes seems
to be appropriate here. This is yet to be defined.

maxreadsize Integer. The maximum number of bytes that can be read from a file.byte file in a
single read operation.

where fstype = “unix”:

bytes Integer. The total number of bytes in the filesystem.

bfree Integer. The number of free bytes in the filesystem.

bavail Integer. The number of bytes available to non-privileged users.

files Integer. The total number of file slots in the filesystem.

ffree Integer. The number of free file slots on the filesystem.

favail Integer. The number of file slots available to non-privileged users.

where fstype = (whatever): need to define attribute sets for other filesystem types.

The Network Extensible File System Protocol Specification 2/12/90

Filesystem Objects DRAFT Page 9

Copyright© 1990 Sun Microsystems, Inc.

dir 1 A directory
file.byte 2 A byte-oriented data file
file.rec.fix 3 A record-oriented data file with fixed length records
file.rec.var 4 A record oriented data file with variable length records
file.key 5 A keyed access file
unix.sym 6 A Unix symbolic link

The filetype is represented by an open-ended namespace. Servers may choose to represent
“common” attributes by a well-known integer but they should continue to accept name
representations of filetype from clients.
There is no structuring implied by the format of the names; should there be one ? Is there a better
one ?
A mechanism for extending the filetype namespace in an organized way needs to be developed in
order to avoid name collisions.
fsize Integer or Hyper. The size of a file. For a byte-oriented file this is the size of the

file in bytes. For a record-oriented file this is a record count.

fbytes Integer or Hyper. The size of a file in bytes. for a byte-oriented file this is the
same as fsize. For a record-oriented file this is the number of bytes used by all the
records in a file. For a variable length record file it includes per-record overhead
for record delimiters.

permbits Integer. A bit field that contains bit encodings for the types of access permitted on
the filesystem object.

0x40000 Hidden
0x20000 Read permission for system
0x10000 Write permission for system
0x08000 Execute permission for system on a file
0x08000 Lookup permission for system on a directory
0x04000 Remove permission for owner
0x02000 Remove permission for group
0x01000 Remove permission for others
0x00800 Set user id on execution
0x00400 Set group id on execution
0x00100 Read permission for owner
0x00080 Write permission for owner
0x00040 Execute permission for owner on file
0x00040 Lookup permission for owner on a directory
0x00020 Read permission for group
0x00010 Write permission for group
0x00008 Execute permission for group on file
0x00008 Lookup permission for group on directory
0x00004 Read permission for others
0x00002 Write permission for others
0x00001 Execute permission for others on file
0x00001 Lookup permission for others on a directory

Is this set of permission bit sufficient. Does there need to be a mechanism for extending this set ?
owner String or integer. The owner of a file.

group String or integer. The group of a file.

fileno Integer. A number that uniquely identifies the file in the filesystem.

atime Timeval. The time when the file data was last accessed.

2/12/90 The Network Extensible File System Protocol Specification

Page 8 DRAFT Filesystem Objects

Copyright© 1990 Sun Microsystems, Inc.

4.1.12 Transport
A composite object that represents the underlying transport medium between the client and server.
The composition of this object needs to be known only to the Interpreter Network Interface (page 5).

4.2 Filesystem Objects
The following objects are filesystem objects defined in terms of fundamental objects.

4.2.1 Filehandle
A filehandle is a string that represents a filesystem object on the server. The filehandle is created by
the server must be used by the client to uniquely identify filesystem objects. A client can store
filehandles for use in later requests, and can compare two file handles from the same server for
equality by doing a byte-by-byte comparison, but cannot otherwise interpret the contents of a
filehandle. If two filehandles from the same server are equal they must refer to the same file, but if
they are not equal no conclusions can be drawn.

Servers can revoke the access provided by a filehandle at any time. If a filehandle is used for an
object that no longer exists on the server or access for that filehandle has been revoked the nefs_stale
error will result.
Should the client should be able to find out the length of the server’s filehandles a priori ? It might
make life easier on the client when it comes to memory allocation.

4.2.2 Filename
A filename is a string that represents the name of a file in a directory. The NeFS protocol does not
attempt to define the characteristics of a filename, but it is generally understood to be a human-
readable string of characters. Although the server may choose to map an invalid filename to a valid
representation in its filesystem, the client is responsible for presenting filenames to the server that
are valid for the filesystem. The client can query the server’s filesystem attributes (section 4.2.4 on
page 10) to determine filename characteristics on the server. The client should use the filesystem
nameset attribute when interpreting the filename data.

The NFS protocol required all implementations to support ASCII names up to 255 characters in
length. The onus was on the server to either attempt to map the name into a valid representation on
the server or to return an error. The intention with NeFS is to shift the responsibility for creating
valid names to the client. For instance, if the client uses ASCII names and the server uses EBCDIC
names, the client is responsible for translation. The advantage of this approach is that the protocol
appears to be more natural to clients and servers that share a common OS and architecture.
Is it necessary to have an filesystem attribute that describes the syntax of a name ? An example is
IBM and MSDOS that allow the use of a dot separated extension and VMS which allows an
appended version number extension.

4.2.3 File Attributes
The attributes of a filesystem object are represented by a dictionary. Each attribute is represented
by a key value in the dictionary (a name) and a corresponding value. The value may be null if the
value is boolean and just the appearance of the name implies true.

Servers must make an attempt to map file attributes into the following set. The server should not
attempt to fudge attributes that have no satisfactory representation. For instance, servers that do not
support record oriented files should not provide a maxrecsize attribute.

ftype A name or integer. The file type. This attribute must be supported by all
implementations. The file type determines the set of file attributes. The ftype is
represented by a name. Commonly used values may also have an integer
representation also. The following are some initial values for ftype with integer
representations included:

The Network Extensible File System Protocol Specification 2/12/90

Fundamental Objects DRAFT Page 7

Copyright© 1990 Sun Microsystems, Inc.

4.0 Data Objects

4.1 Fundamental Objects
The following object types are fundamental to all implementations. Additional object types may
need to be supported.

4.1.1 Integer
A simple object that contains a 32 bit signed integer value in the range [-2147483648, 214748367].

4.1.2 Hyper
A simple object that contains a 64 bit signed integer value.

4.1.3 Boolean
A simple object that contains a boolean value true or false.

4.1.4 Array
A composite object that represents an array of objects. The first element in an array has an index
of 0. Arrays have a length attribute that is fixed when the array is created. The objects in an array
may have different types. Multidimensional arrays may be created by including arrays as elements
of arrays.

4.1.5 String
Similar to an array with the restriction that it can hold only small integers in the range [0, 255] as
elements. A string may be used to hold ASCII strings or binary data.

4.1.6 Name
An atomic identifier within the interpreter. Externally a name can be represented as a string object.

4.1.7 Dictionary
A dictionary is a table that contains pairs of key-value objects. A key can be any kind of object
though it is usually a name object. The corresponding value can be any kind of object. A dictionary
has two attributes: maxlen which is that maximum number of key-value pairs that it can hold, and
length which is the number of key-value pairs currently in the dictionary.

4.1.8 Timeval
A composite object that represents a time and date. This object comprises two unsigned 32 bit
integer values: the first is the number of seconds since midnight January 1, 1970 GMT, the second
is a fraction of a second counted in nanoseconds.

4.1.9 Null
A simple object that is used to fill uninitialized positions in arrays or dictionaries. The null object
has no value.

4.1.10 Mark
A simple object that is used to mark a position in the operand stack. The mark object has no value.

4.1.11 Error
A composite object that is created by the interpreter to report error information (see section 6.2 on
page 46).

2/12/90 The Network Extensible File System Protocol Specification

Page 6 DRAFT Resource Limits

Copyright© 1990 Sun Microsystems, Inc.

interpreter to make callbacks into the network interface module to request objects from the network.
The network interface also implements the operations to enqueue objects in a response packet
(encodereply on page 18), transmit a response (sendreply on page 34), or flush enqueued objects
(flushreply on page 20).

When the interpreter execution of the client’s request is complete the network interface module
deletes the request context. It then proceeds to service a new request.

3.3.2 Object Representation
Objects are the data items manipulated by the interpreter. All objects have a type attribute. The
composition of an object varies depending on its type. A simple object like an integer contains just
a value. A composite object like an array contains a length attribute and a reference to an external
vector of elements. The interpreter sees objects as structures containing binary data and memory
references to data. This representation is not suitable for transport across a network. The network
interface module translates objects back and forth between their network and internal
representations.

To convert an object to its network representation, memory addresses must be dereferenced to real
data values and the data values must be represented in a portable format that takes account of byte
ordering and data alignment differences between different computer architectures.

3.3.3 Duplicate Requests
The network interface may receive duplicate client requests, usually as the result of a client that
retries a request for which no response has been received. It is strongly recommended that the
network interface be able to detect duplicate requests and avoid unnecessary work by withholding
them from the interpreter. Assuming that every request contains a unique identifier in its header, a
cache of recent requests indexed by a unique request identifier can be used to detect duplicates.

3.3.4 Authentication
The network interface must convey the client’s authentication information where present into the
interpreter environment and verify that it is correct. It may also be required to restrict access to the
interpreter based on the client’s identity. Authentication information in the environment is conveyed
by the interpreter to the NeFS operators to be used in checking access permissions for filesystem
objects.

3.3.5 Interface Errors
The network interface may detect errors or conditions that preclude invocation of the interpreter.
These may be transport or protocol errors that require a response via the appropriate protocol layer
e.g. a packet that fails a checksum verification. Service may also be denied based on the requestor’s
network address or credentials.

3.4 Resource Limits
The server must establish resource limits to prevent malicious or ill-behaved requests from
monopolizing all of the server’s resources. These limits are server implementation dependent.
Clients must interrogate the servers in which they interact and adjust their behavior accordingly. The
NeFS model will define a minimum to which all servers will adhere. Server implementations are
free to provide resources in excess of the established minimum. It is intended that client requests be
written to scale easily to the varying resource limits imposed by servers.

Need to establish minimum resource limits. Already have memstatus and timestatus operators to
query memory and time usage and limits, but need operators to query stack limits.

The Network Extensible File System Protocol Specification 2/12/90

Interpreter Network Interface DRAFT Page 5

Copyright© 1990 Sun Microsystems, Inc.

client not only has complete control over the composition of the response but it can determine
whether a response is transmitted at all. A single request could also result in multiple responses.

3.3 Interpreter Network Interface
The NeFS protocol describes the operand and data objects interpreted by a NeFS server. It does not
define a standard network representation of the protocol. Standard network representations for the
protocol must be defined separately and are implemented by a network interface at the client and at
the server.

The interpreter network interface module has a dual function. Firstly, it is a transport layer that hides
the underlying means of conveying objects between the client and server. Secondly, it is a NeFS
client’s agent on the server for the duration of its request.

As a transport layer it moves client requests and responses between the network and the NeFS
interpreter. Both the request and the response packets comprise a sequence of objects. The network
interface module translates objects between their network representation and their representation as
known to the interpreter. The protocol is not tied to a single transport, nor even a single network
representation for objects. A single server could make several network interfaces available to
diverse sets of clients.

This document describes only the NeFS language - not a network standard. The NFS protocol is
inextricably bound to Sun RPC. NeFS does not specify how objects comprising requests and
responses are conveyed between client and server. Sun RPC will be just one of potentially many
network standards. These network standards must be described if implementations of the NeFS
protocol are to interoperate. These standards should be described separately.

3.3.1 Interpreter Context
On successful receipt of a client request, the network interface module invokes an instance of the
NeFS interpreter. The network interface presents an executable object to the interpreter as a single
argument. This object may be viewed as the interpreter’s handle to the network interface - the
interface handle. As the interpreter executes the client’s request the interface handle is used by the

ServerClient
Request

Response

N
etw

ork Interface

 Interpreter

 Filesystem

Read

Write

Lookup

 Interpreter

 Filesystem

Server

Transport 1

Transport 2

Clients

Clients

2/12/90 The Network Extensible File System Protocol Specification

Page 4 DRAFT The Language

Copyright© 1990 Sun Microsystems, Inc.

the page description language with a filesystem model. The result is a language that allows complex
and varied filesystem operations to be expressed in a simple, compact form.

Given the flexibility and generality of a programming language the NeFS protocol is no longer
rigidly tied to a single filesystem model and a strictly limited set of client interactions. The new
language-based protocol allows clients with diverse operating systems and requirements to tailor
their requests to the server to suit their unique needs. A goal of the protocol is that it will appear to
be a natural extension of a client’s native operating system operations to the network.

3.1 The Language
The POSTSCRIPT language employs a postfix notation in which operators are preceded by their
operands. While this notation is counter-intuitive for human readers, it simplifies interpreter design;
operands are simply pushed onto an operand stack and operators take their operands from this stack.
For instance, the POSTSCRIPT notation to add two numbers is:

87 22 add

As the interpreter encounters the 87 and 22 it recognizes them as operands and pushes them onto
its operand stack. The add operator just adds removes the two values from the stack, adds them,
and pushes their sum onto the stack. The value left on the stack can be used as an operand by another
operator. The language data model provides integers, booleans, strings and arrays (Fundamental
Objects on page 7). The execution model provides conditional evaluation and looping operators
(Operators on page 12).

 Since the NeFS interpreter receives a program as a tokenized sequence of objects it is beyond the
scope of this document to specify a human-readable form for the language but a useful medium for
communication is the ASCII representation of the POSTSCRIPT language as described in the “Red
Book” (POSTSCRIPT Language Reference Manual, Adobe Systems Incorporated).

3.2 Request and Response
A client’s request to the server is a small program to be interpreted. The program is a tokenized form
of POSTSCRIPT represented as a sequence of objects. These objects can be roughly classified into
operators and operands. It is assumed that each client will maintain a set of tokenized requests ready
for transmission to the server. The client will choose the appropriate request for the operation it
wishes to perform, substitute the required data objects, and transmit the request to the server.

The client receives a response to its request as a sequence of data objects. Within the client’s request
are operators that assemble data objects into a response and transmit them back to the client. The

Server

Read

Write

Lookup

The Network Extensible File System Protocol Specification 2/12/90

Statelessness DRAFT Page 3

Copyright© 1990 Sun Microsystems, Inc.

2.2 Statelessness
In common with the NFS protocol, NeFS assumes a stateless server implementation. Statelessness
means that the server does not need to maintain state about any of its clients in order to function
correctly. Stateless servers have a distinct advantage over stateful servers in the event of a crash.
With stateless servers, a client need only retry a request until the server responds, the client does not
even need to know that the server has crashed.

This is not to say that servers are not allowed to maintain state about client operations, but that the
state held by servers is not required for correct operation. In many cases servers will maintain state
about previous operations to increase performance. For example, a client read request might trigger
a read–ahead of the next block of the file into the server’s data cache in the hope that the client is
doing a sequential read and the next client read request will be satisfied from the cache instead of
from the disk. The read–ahead block is not necessary for correct server behavior, but it increases the
server’s performance.

If the client chooses to maintain state on the server it has the responsibility to restore that state in the
event of a server crash. For instance, a client may choose to perform a series of writes to the server
without committing the writes to disk. The client must retain the uncommitted data in case the server
crashes before the client is able to confirm that the data is safe on the server’s disk. The client must
be able to replay the writes when the server has recovered.

Clients can do as much or as little caching as they want. The protocol does not have any explicit
support for cache consistency.

2.3 Idempotency
An idempotent request is one that can be successfully repeated by the client. An example is a read
request; since it specifies both an offset and length the request will always successfully return the
same data no matter how many times it is repeated. This attribute is important because a client that
does not receive a response within a timeout period will retry the request until a response is received.
This behavior could result in the same request being executed several times on a server that is having
difficulty getting a response back to the client within its timeout period.

The NFS version 2 protocol did not attain the goal of completely idempotent operations. For
instance, a create request would fail when executed a second time because the file already existed
from the first attempt. Implementations of the version 2 protocol not only required code in the client
implementation that would recover from such retry errors, but also a request cache on the server that
could be used to detect duplicate requests of non-idempotent operations and avoid re-doing them.

The NeFS protocol does not guarantee idempotent operations per se, but it does allow requests to
be assembled that can detect retries of themselves and take account of changes made to the
filesystem by previous incomplete or unacknowledged executions. Though network transports with
at-most-once semantics and/or duplicate request caches can still be usefully employed, they are not
required by the protocol to implement idempotency on all requests.

3.0 Interpreter

The NeFS interpreter resides in the server. It interprets a tokenized form of the POSTSCRIPT®*
language originally developed by Adobe Systems, Incorporated. Although POSTSCRIPT is better
known as a page description language, it is also a powerful, general-purpose programming language.
The version of the language as implemented by the NeFS interpreter replaces the imaging model of

*. POSTSCRIPT is a trademark of Adobe Systems, Inc.

2/12/90 The Network Extensible File System Protocol Specification

Page 2 DRAFT The Network Extensible File System

Copyright© 1990 Sun Microsystems, Inc.

6. Performance. The NFS version 2 protocol provides a fixed set of operations between client and
server. While a degree of client caching can significantly reduce the amount of client-server
interaction, a level of interaction is required just to maintain cache consistency and there yet
remain many examples of high client-server interaction that cannot be reduced by caching. The
problem becomes more acute when a client’s set of filesystem operations does not map cleanly
into the set of NFS procedures.

1.2 The Network Extensible File System
NeFS addresses the problems just described. Although a draft specification for a revised version of
the NFS protocol has addressed many of the deficiencies of NFS version 2, it has not made non-Unix
implementations easier, not does it provide opportunities for performance improvements. Indeed,
the extra complexity introduced by modifications to the NFS protocol makes all implementations
more difficult. A revised NFS protocol does not appear to be an attractive alternative to the existing
protocol.

Although it has features in common with NFS, NeFS is a radical departure from NFS. The NFS
protocol is built according to a Remote Procedure Call model (RPC) where filesystem operations
are mapped across the network as remote procedure calls. The NeFS protocol abandons this model
in favor of an interpretive model in which the filesystem operations become operators in an
interpreted language. Clients send their requests to the server as programs to be interpreted.
Execution of the request by the server’s interpreter results in the filesystem operations being invoked
and results returned to the client. Using the interpretive model, filesystem operations can be defined
more simply. Clients can build arbitrarily complex requests from these simple operations.

2.0 Philosophy
Firstly some terminology: a client is a computer or network node that requires access to filesystems
held on a server. A server is another computer that provides access to one or more filesystems; it
may also be a client itself. A client sends a request to the server and will receive zero or more
responses from the server. Typically a request will generate one response.

2.1 Filesystem Model
The NeFS protocol does not conform to a specific filesystem model. It is designed to permit access
to a wide variety of filesystems from a diverse set of operating systems with little or no loss of
semantics. The protocol attempts to resolve a conflict between what appear to be conflicting
requirements: while allowing different clients and servers to interoperate, the protocol must maintain
the access semantics and performance expected by clients and servers that share the same
architecture. By defining a small, yet complete set of filesystem objects and operations, it is hoped
that each implementation of the protocol will perceive the protocol as a natural network extension
of the filesystems it supports.

A filesystem is assumed to be an independent collection of data organized into named files. In
practical terms a filesystem can be regarded as the files on a magnetic disk or in a disk partition. The
protocol assumes that the files are accessed via directories and the directories may be organized into
a hierarchical tree structure. A flat filesystem that has no hierarchical structure is considered to be
a degenerate instance of a tree structure with a single directory. The NeFS protocol requires every
filesystem object to be represented by a filehandle (see Filehandle on page 8).

Although this draft of the protocol specification does not define it, it is important that a common set
of filesystem objects and operations be specified as the lingua franca of filesystem operations.
Server implementations should make a best effort at making their own filesystems appear to be just
another instance of the common set. Similarly, clients should attempt to map their file access onto
the common set.

The Network Extensible File System Protocol Specification 2/12/90

The Network File System DRAFT Page 1

Copyright© 1990 Sun Microsystems, Inc.

Network Extensible File System
Protocol Specification

Comments to:

sun!nfs3
nfs3@SUN.COM

Sun Microsystems, Inc.
2550 Garcia Ave.

Mountain View, CA 94043

1.0 Introduction
The Network Extensible File System protocol(NeFS) provides transparent remote access to shared
file systems over networks. The NeFS protocol is designed to be machine, operating system,
network architecture, and transport protocol independent. This document is the draft specification
for the protocol. It will remain in draft form during a period of public review. Italicized comments
in the document are intended to present the rationale behind elements of the design and to raise
questions where there are doubts. Comments and suggestions on this draft specification are most
welcome.

1.1 The Network File System
The Network File System (NFS™*) has become a de facto standard distributed file system. Since
it was first made generally available in 1985 it has been licensed by more than 120 companies. If
the NFS protocol has been so successful why does there need to be NeFS ? Because the NFS protocol
has deficiencies and limitations that become more apparent and troublesome as it grows older.

1. Size limitations. The NFS version 2 protocol limits filehandles to 32 bytes, file sizes to the
magnitude of a signed 32 bit integer, timestamp accuracy to 1 second. These and other limits
need to be extended to cope with current and future demands.

2. Non-idempotent procedures. A significant number of the NFS procedures are not idempotent.
In certain circumstances these procedures can fail unexpectedly if retried by the client. It is not
always clear how the client should recover from such a failure.

3. Unix®† bias. The NFS protocol was designed and first implemented in a Unix environment.
This bias is reflected in the protocol: there is no support for record-oriented files, file versions
or non-Unix file attributes. This bias must be removed if NFS is to be truly machine and
operating system independent.

4. No access procedure. Numerous security problems and program anomalies are attributable to
the fact that clients have no facility to ask a server whether they have permission to carry out
certain operations.

5. No facility to support atomic filesystem operations. For instance the POSIX O_EXCL flag
makes a requirement for exclusive file creation. This cannot be guaranteed to work via the NFS
protocol without the support of an auxiliary locking service. Similarly there is no way for a
client to guarantee that data written to a file is appended to the current end of the file.

*. NFS is a registered trademark of Sun Microsystems, Inc.
†. Unix is a registered trademark of AT&T.

