Notice: Undefined property: stdClass::$theme in /usr/local/src/drupal-5.1/includes/theme.inc on line 45
PostScript | Don Hopkins

PostScript

warning: Creating default object from empty value in /usr/local/src/drupal-5.1/modules/taxonomy/taxonomy.module on line 1364.

History and Future of OLPC SimCity / Micropolis

There are several different versions of SimCity, and at least two different names (so far):

  • The original version of SimCity was developed by Maxis on the C64, and ported to various platforms, including the Macintosh. Maxis licensed the Macintosh SimCity source code to DUX software, to port to Unix.
  • DUX Software contracted me (Don Hopkins) to port SimCity to Unix, and I developed "SimCity HyperLook Edition", while working at the Turing Institute on HyperLook with Arthur van Hoff. The user interface was written in PostScript, which ran on the NeWS window system on Sun workstations, and it supported multiple zoomable views, pie menus, annotating and printing maps, and many user interface improvements.
  • After Sun canceled NeWS, DUX Software contracted me to rewrite the HyperLook user interface in TCL/Tk for X11, and I developed a multi-player networked user interface using the X11 protocol. The TCL/Tk version of SimCity has been ported to various Unix and non-Unix platforms, including SunOS, Solaris, Irix, HP/UX, OSF/1, Quarterdeck Desqview/X, NDC X Terminals, Warp, and Linux. The contract to sell SimCity for Unix expired after ten years, so the TCL/Tk version was no longer commercially available.
  • OLPC SimCity is based on the TCL/Tk version of SimCity. SimCity is a trademark of Electronic Arts. Don Hopkins adapted SimCity to the OLPC, thanks to the support of John Gilmore. OLPC SimCity will be shipped with the OLPC, and it has been run through EA's quality assurance process and reviewed for integrity. EA reserves the right to review and approve any version of the game distributed under the name SimCity.
  • "Micropolis" is the name of the current GPL open source code version of OLPC SimCity. That was the original working title of Will Wright's city simulation game. Since Micropolis is licensed under the GPL, anyone can do anything they want with it that conforms with the GPL, except they can't call it "SimCity" (and a few other limitations to protect EA's trademarks).
  • Other differently named projects can be forked from the Micropolis source code, as long as they're not called SimCity.
  • Improvements to the open source code base that merits EA's approval may be incorporated into the official "OLPC SimCity" source code, to be distributed with the OLPC under the trademarked name "OLPC SimCity", but only after it's been reviewed and approved by EA.
  • In the short term, the TCL/Tk version of Micropolis can be upgraded to support the latest version of TCL/Tk, fix bugs, improve the user interface and Sugar integration, etc. Once that is stable as well integrated into Sugar, it could be submitted to EA to become the official version of "OLPC SimCity" distributed on the XO laptop.
  • In the long term, Micropolis can be recast from C to C++ classes, so it's possible to define clean interfaces between software modules, and make multiple instances of the simulator that don't interfere with each other, as well as easily interfacing it to Python using the SWIG interface generator. That should be done in a language-neutral way, so you could plug the simulator engine into many different languages and programming systems. Then more work needs to be done to open it up, and make it re-vectorable (plug-ins, events, callbacks, hooks, aspect oriented programming, etc), so you can replace and extend the various modules with the host language(s), eventually re-implementing most if not all of SimCity in another language.

OLPC Visual Programming Languages for Education

Simon Forman's stuff about xerblin is fascinating, and I'm excited about where it's heading, and how we can incorporate ideas from eToys into Python! I like the idea of having visual meta-languages that are compiled into Python, which avoids the problems of editing Python text or parse trees directly, and can support simplified "kindergarten" languages as well as more advanced forms.

The drag-and-drop stack and code outliner ideas work well with PostScript, which is a stack based but lispy code=data dynamic language that easily supports smalltalk-like object oriented programming via PostScript's "dictionary stack". Python + Cairo is also a great platform for implementing that kind of stuff, with dynamic layout of hybrid text and outline graphics, which scales and zooms and supports direct manipulation of data structures!

Here's a paper about PSIBER (PostScript Interactive Bug Eradication Routines), a visual interface to the PostScript interpreter in NeWS, and some links to video demos, too. Sorry about the flashing and poor compression -- they're recorded off a hires Sun monitor whose refresh rate was different than the camera, and I mercilessly compressed them a few years ago when the Internet was slower.

The Shape of PSIBER Space: PostScript Interactive Bug Eradication Routines
http://www.donhopkins.com/drupal/node/97

PSIBER Demo: (9434433 bytes) Demo of the NeWS PSIBER Space Deck. Research performed under the direction of Mark Weiser and Ben Shneiderman. Developed and documented thanks to the support of John Gilmore and Julia Menapace. Developed and demonstrated by Don Hopkins.
http://www.donhopkins.com/home/movies/PSIBERDemo.mov

One problem with PSIBER was that it was too easy to make a mistake dragging and dropping, and accidentally totally hose the internals of the window system, since you were editing shared structures in the NeWS server, like classes and canvases and event handler threads! It needed some kind of read-only safety shield or edit mode switch. Like Emacs, its main purpose in life was to develop and debug itself (and secondarily other NeWS applications like HyperTIES and NeMACS)!

A regular hierarchal outliner like most gui toolkits support might be too limiting for a visual programming language. Objects might have several ways to "open" them, and links coming in as well as going out. Any object might be at the intersection of several trees or sequences at once (like the class hierarchy, and the window hierarchy, the set of instances of the same class, and an ordered list of search results).

PSIBER supported "peripheral views" that let you attach embedded visual editors and open objects in different ways. Good XML editors support a branch for element attributes as well as a separate branch for sub-elements and text. Check out the way 3D Studio Max has outlines with two kinds of branching at each level of the 3d object tree (one branch for animatable object properties, and another branch for attached sub-objects), and the way it crosses a vertical outline with a horizontal timeline. It would be nice to be able to view an object in one or more hierarchies or sequences at once (like 3dsmax's property/sub-object outline + timeline), and easily pivot the editor between different hierarchies and sequences and alternative views (narrowing it to just a timeline, or just a sub-object outline, or a free-form graph view).

I can't remember what he called his system, but Steve Strassmann did some cool stuff on Mac Common Lisp or Dylan with "butterfly diagrams" that branched out in different directions, left for incoming links and right for outgoing links.

The closest thing I could google about Strassmann's butterfly diagrams was his infamous "Is There Toscanini's Ice Cream in Heaven?" flowchart:
http://www.wunderland.com/WTS/Ginohn/cetera/heaven/heaven.gif
http://www.wunderland.com/WTS/Ginohn/cetera/heaven/index.html

Marc H. Brown and Robert Sedgewick at Brown University developed a cool visual interface to Pascal called Balsa (named after a tree, of course), which supported multiple synchronized views of Pascal programs (lexical structure outline, Nassi-Shneiderman flowcharts, dynamic scope views, pascal syntax graphs, algorithm animation, etc). But it was pretty restrictive and ungainly about how you could input and edit a program (you could not do anything that wasn't syntactically correct, and I don't think it supported drag-and-drop), so you couldn't just type Pascal code into a text editor and watch the code views update in real time.

Here's a paper by Brad Myers that mentions Balsa and lots of other cool stuff like Henry Lieberman's "Tinker" Lisp programming by demonstration system:

Brad Myers: Taxonomies of Visual Programming and Program Visualization
http://www.cs.cmu.edu/~bam/papers/vltax2.pdf

Marc H. Brown, Robert Sedgewick: A system for algorithm animation
http://portal.acm.org/citation.cfm?id=808596&coll=portal&dl=ACM

Henry Lieberman: Tinker: A Programming by Demonstration System for Beginning Programmers, in Watch What I Do: Programming by Demonstration, Allen Cypher, ed., MIT Press, 1993.
http://web.media.mit.edu/~lieber/Lieberary/Tinker/Tinker.html

One problem with editing programs as text while trying to maintain a visual representation, is that typing in and editing a program as text puts the program through many syntactically incorrect states, before you've closed all your parens and balanced all your blocks, and you have a horrible correspondence problem mapping between changes in the text to changes in the structure. So it's hard to have your cake and eat it too. Even Emacs Electric-C Mode can get pretty annoying when it tries to close your parens and reindent your program for you while you're typing, if you're not trained to expect it. Of course it's much easier to attempt with languages like Lisp and Python that have simple clean syntax, rather than languages like Perl and C++ with complex byzantine syntax.

-Don

PS: Some weird videos:

Here's an incomprehensible video I recorded late at night, of the freaky "PseudoScientific Visualizer" stuff: Pseudo Scientific Visualizer Demo: (21431618 bytes) Demo of the PseudoScientific Visualizer and NeWS PSIBER Space Deck. Research performed under the direction of Mark Weiser and Ben Shneiderman. Developed and documented thanks to the support of John Gilmore and Julia Menapace. Developed and demonstrated by Don Hopkins.
http://www.donhopkins.com/home/movies/PseudoScientific.mov

HyperTIES Demo: (3562242 bytes) University of Maryland Human Computer Interaction Lab HyperTIES Demo. Research performed under the direction of Ben Shneiderman. HyperTIES hypermedia browser developed by Ben Shneiderman, Bill Weiland, Catherine Plaisant and Don Hopkins. Demonstrated by Don Hopkins.
http://www.donhopkins.com/home/movies/HyperTIESDemo.mov

NeMACS Demo: (3511315 bytes) Demo of UniPress NeMACS running in the NeWS Window System. Emacs development performed under the direction of Mike Gallaher. NeWS user interface developed and demonstrated by Don Hopkins.
http://www.donhopkins.com/home/movies/NeMACSDemo.mov

HyperLook SimCity Demo: (49816346 bytes) Demonstration of SimCity running under the HyperLook user interface development system, based on NeWS PostScript. Includes a demonstration of editing HyperLook graphics and user interfaces, the HyperLook Cellular Automata Machine, and the HyperLook Happy Tool. Also shows The NeWS Toolkit applications PizzaTool and RasterRap. HyperLook developed by Arthur van Hoff and Don Hopkins at the Turing Institute. SimCity ported to Unix and HyperLook by Don Hopkins. HyperLook Cellular Automata Machine, Happy Tool, The NeWS Toolkit, PizzaTool and Raster Rap developed by Don Hopkins. Demonstration, transcript and close captioning by Don Hopkins. Camera and interview by Abbe Don. Taped at the San Francisco Exploratorium.
http://www.donhopkins.com/home/movies/HyperLookDemo.mov

Even more weird videos: http://www.donhopkins.com/home/movies/

PostScriptish interpreter in Laszlo

Today, Grig and I were discussing how to evaluate arbitrary mathematical expressions in Laszlo applications, in the absence of "eval".

The Flash runtime doesn’t support parsing math expressions with infix notation like "(1 + 2) * 10" – that would require the Laszlo compiler, or a lot of nasty JavaScript parsing code.

I think it would be easy to implement a simple rpn stack machine like PostScript, that used string.split(" ") to break a string apart into tokens, which Flash can do fast.

So I hacked up this Laszlo interpreter class that behaves almost but not quite completely unlike a PostScript interpreter.

Syndicate content